/
IBM

Technical Newsletter

« IBM SYSTEM/360 OPERATING SYSTEM

PL/I (F) COMPILER

PROGRAM LOGIC MANUAL

File Number $360-29
Re: Form No. Y28-6800-3
This Newsletter No. Y33-6002
Date May 1, 1968
Previous Newsletter Nos. None

This Technical Newsletter provides replacement pages for
IBM System/360 Operating System, PL/I (F) Compiler, Program Logic

Manual, Form Y28-6800-3,

Iisted below.

Pages to be inserted and removed are

to be

Pages to be Pages
Inserted Removed
25,26 25,26
33-36 33-36
43-46,46.1 43-46
49-52 49-52
59-61,61.1,62 59-62
117,118 117,118
129,130 129,130
135,136 135,136
139,140 139,140
209,210 209,210
243,244 243,244
255,256 255,256
287-290 287-290
302.1,302.2 -
303,304 303,304
335-338 335-338
345,345.1,346 345,346
355,356,356.1 355,356
363-365,365.1,366 363-366
373,374 373,374
413,414 413,414
421,422,422.1 421,422
425-428,428.1 425-428

A change to the text or a small change to an illustration is
indicated by a vertical line to the left of the change; a changed
or added illustration is denoted by the symbol e to the left of

the caption.

Y33-6002 (Y28-6800-3)

IBM United Kingdom Laboratories 1.td., Programming Publications, Hursley Park, Winchester, Hampshire, England.

PRINTED IN U.S.A

Restricted Distribution

Page 1 of 2

The specifications contained in this Technical Newsletter
correspond to Release 16 of IBM System/360 Operating System.
Significant changes or additions will be reported in subsequent

revisions or technical newsletters.

Summary of Amendments

This Technical Newsletter documents incremental improvements
to the PL/I F Compiler for Release 16 of IBM System/360 Operating
System. These improvements include: implementation of the
UNALIGNED attribute and the STRING function; array and subscript
optimization; and diagnostic message improvements.

Note: Please file this cover letter at the back of the manual to
provide a record of changes.

¥33-6002 (Y28-6800-3)

Page 2 of 2

Module AD

Module AD performs inter-phase dumping.

All specified active storage is dumped
at the end of the phases stated or implied
in the DUMP option. If the DUMP option
includes either I, for the Annotated Dic-
tionary Dump, or E, for the Annotated Text
Dump, or both, then phase. AD will load
either phase AH, or phases AI and AJ, or
all three, to produce the required output.

The DUMP Option

The DUMP option which is specified in
the PARM field of the EXEC card indicates
where dumping of main storage is to take
place. It may be specified in one of the
following ways:

1. DUMP, means a dynamic dump is required
(the dump routine will be called by a
running phase)

2. DUMP=(AREA,X; ,X2,X34+00.Xn) means a
dump of the storage after the named
phase.

AREA is any combination of TDPSCIE:
text blocks

dictionary blocks

phases lcaded

scratch storage

control phase

annotated dictionary blocks
annotated text blocks

(Wi

HHOWY

The general syntax is:
DUMP [=([AREA], {x]| (y,2)},...)]

A single phase name indicates dumping of
storage after this single phase. A pair of
phase names indicates a continuous group of
phases after which dumping of storage is to
occur.

The dump will appear on SYSPRINT,
inserted into the normal compiler output.

If AREA is omitted the default taken is
DTSP. If a program check occurs and DUMP
has been specified then AREA will be given
the default DTSPC.

Use of +the DUMP -option may cause the

compiler to u$e about 8K bytes more core
than the SIZE option specifies. This is
because SIZE specifies the amount of core

the compiler can use for normal compilation
and does not allow for the internal compil-
er diagnostic dumps.

Example of an EXEC card

option:

using the DUMP

//STEP1 EXEC PROC=PL1LFC,
PARM.PL1L="DUMP=(TE,QJ) "

This statement specifies compilation using
the DUMP option to obtain a printout of the
text blocks, the annotated text blocks, and
of storage after the completion of compiler
phase QJ.

Module AE

finalization of the
(See Fig.4, Notet)

Module AE is the
READ-IN Phase control.

Module AF

Module AF is a control section consist-
ing of a table containing the compiler
options which may be used during a compila-
tion. The table is constructed at system
generation time. The control section is
brought into storage by the initialization
Module AB at compilation tire. A descrip-
tion of the use of Module AF is given in
Appendix G.

Module AG
Module AG closes SYSUT3 for output, and
re-opens it for input.

The closing and opening operations are
performed in the following order:

CLOSE
alter macro-type in data control block
(DCB)

OPEN (INPUT)

switch routine ZURD to point at SYSUT3

DCB

Module AH

This module produces a dump of the
dictionary. It prints out the cormuni-
cations region in the first klock, and the
offsets tables for each block if the
extended dictionary option is in use. The
remainder of each block is printed
out entry by entry. The BCD is trans-

lated for those entries containing BCD. At
the end of the dump, a list of all the

Section 2 (Compiler Phases): Control, 48-Character Preprocessor 25

dictionary codes used is given, with an
explanation for each code.

The module is called by phase AD only if

an I is specified in the AREA field of the
DUMP optionmn.

Modules AI and AJ

Modules AI and AJ are called, if E is
specified in the area field of the dump
option, to provide an 'easy-to-read' text
print in which the triples and pseudo-code
items comprising the text are printed sep-
arately. This option is available between
phases IA and OE inclusive.

Module AK

Module AK is the closing routine of the
compiler. Its function is to release core
used for dictionary, text blocks, scratch
storage, and completed phases. If batch
compilation is not specified, module AK
closes all the files used by the compiler.

If a batch compilation is specified, a
check is made to determine whether any
source programs are still to be compiled.

Where there are none module AK closes all
files. where one or more programs remain
to be compiled, the spill file only is
closed, the batch delimiter card is scanned
for syntax errors, and control is returned
to module AA.

Module AL

This module contains the control rou-
tines for dictionary and text-block han-
dling for the extended dictionary.

Module AM

Module AM marks phases as either wanted
or not wanted, depending upon the compiler
invocation options. Phases that are always
loaded are marked wanted.

AM is the first compiler phase loaded
after compiler initialization. It tests
the relevant bits in CCCODE and marks the
phases accordingly.

26

Module AN

This module contains the routines for
dictionary and text-block handling for the
normal-sized dictionary.

Module JZ

Module JZ builds the seccnd half phase
directory. A build 1list is constructed
from the second half list held in Module

AA:; a BLDL is performed on this list. The

phase directory is then reconstructed in
Module AA for the second half of the
compiler.

48-CHARACTER SET PREPROCESSCR

Phase BX is the #48-character set prepro-
cessor. It is loaded on programmer option
and receives, as input, source text in the
g48-character syntax.

The preprocessor scans the input text
for occurrences of characters peculiar to
the 48-character set, and converts these to
the corresponding 60-character symbols. It
then puts out the adjusted text onto back-
ing storage ready for Phase CI, the first
pass of the Read-In Phase.

The text is real in record by record.
It is then scanned for alprhaketic charac-
ters which may be the initial letters of
operator keywords, for periods, and for
commas. Items within comments or character
strings are ignored.

When a possible initial letter is disco-
vered, tests are made to determine whether
or not one of the reserved operator Kkey-
words has been found. If one has been
found, it is replaced by its 6é0-character
set equivalent. ~Similarly, appearances of
two periods are replaced by a colon, and a
comma-period pair is replaced by a semi-

colon if +the comma-period pair is nct
immediately followed ky a numeric
character.

allowance is made .for the possibility

that a concatenation of characters which is
meaningful in the 48-character set may be
split between two records.

Before the text is processed a copy of .
the original input is preserved. The out-
put from the preprocessor is the trans-
formed text, record by record, followed by
the original text. The Read-In Phase proc-
esses transformed text but prints out the

-

r——>| Dictionary entry for entrv label

b e e s

I
-—

r

->| Entry type 2. Used to provide
|

-1

T

data description of target in
RETURN (expression).

(S

I
I
|
|
|
|
|
|
I
I
|
|
|
I
L

I
|
|
!
|
|
|
Ll
Mt -- -
[
1 r - ——m———emg
11 I v
I r—————————————— b S i e e 1
| |t->| Entry type 3. This entry is used | | Second entry type 2. |
| | to point at the data description ¢ | | Used to provide data description |
| L-——| and parameter descriptions for para-|D | of value returned when lakel A |C
| r——-| meter matching. | | is invoked as a function. This |
[I s e ——— o ——- 4 | entry may, and usually w1ll coin- |
|1 | | | | cide with B. |
|| | | | t— e 4
1| | Loy b 1
I I | |
I v v v
I s 1 P e T 1
| | | Description of | | Description of | | Description cf |
[IE | [E1 | |E2
| | | first parameter | | second parameter | | each parameter
| | b J L ———— _— B— b e 1
I
T B 1 T -—= == [e e e 1
| 1 | Entry type 1 for | | Formal parameter | Description cf vara- |
| t->| PROCEDURE or |F | type 1 entry |G | meter used in rrologue|H
L-—— | ENTRY statement | | v | | construction i
L_ ——— b e T————— 3 L e e 4
I A | A
| I | |
L — ——l L — —_—

Note: There is an entry E for each parameter described in D.

Figure 6.

Phase_ ED

Phase ED contains a set of subroutines,
for processing certain of the tasking and
list processing attributes, and tables of
generic and non-generic built-in functions.
The phase obtains 1K of scratch core, into
which it moves the routines and tables,
setting a slot in the communications region
to point at them. This address is later
picked up and used by phase EL.

Phase EG(EF)

Phase EG has two main functions. The
first is to set wup a hash table, and to
insert the label entries left in the dic-

by the Read-In Phase into hash
The second function of the phase

tionary
chains.

Dictionary Entries for an Internal Entry Point

is to create dictionary entries for PROCE-
DURE, BEGIN, and ENTRY staterents, and to
construct chains linking entries cf parti-
cular types.

For PROCEDURE-BEGIN statements, entry
type 1 dictionary entries are created (see
Appendix C.2), and block header chains are
set up to link these entries sequentially.
A containing block chain is also set up to
link each entry with that of its containing
block.

Oon the appearance of PROCEDURE state-
ments, circular PROCEDURE-ENTRY chains are
initialized +to 1link the entry type 1 dic-

tionary entries of the PROCELURE and ENTRY

statements of the same block. The formal
parameter list is scanned, and formal par-
ameter type 1 entries are created and

inserted into the hash chain. Details of
the PROCEDURE-ENTRY chains agpear in Appen—
dix C.2.

Section 2 (Compiler Phases): Dictionary Logical Phase 33

The attribute 1list 1is scanned ani an
options code byte is created in the entry
type 1 (see Appendix C.2). A check is then
made for invalid and inconsistent attri-
butes. CHARACTER and BIT attributes are
processed, and second file statements (see
Appendix D.8) are created if necessary.
Precision data are converted to binary, and
dictionary entries are created for pictures
(see Arpendix C.7).

Statement labels are scanned and their
entry type 2 dictionary entries are creat-
ed. The relevant data bytes in the dic-
tionary are completed by default rules (see
Appendix C.3).

For ENTRY statements, entry type 1 dic-

tionary entries are created (see Appendix
c.2), and the circular PROCEDURE-ENTRY
chain is extended. Formal parameters,

attributes, and labels are processed in a
similar manner to those for PROCEDURE
statements, except that the options code
byte is not created.

Phase EI (EH, EJ)

Phase EI scans the chain of DECLARE
statements set up by the Read-In Phase, and
modifies the statements to assist Phase EK
as follows:

Structure Level Numbers: these are

verted to binary.

con-

Factored Attributes: parentheses enclosing
factored attributes are replaced by special
code bytes, so that Phase EK can distingu-
ish them easily. A factored attribute
takle is set up. It consists of slots
corresponding to each factored level. Each
slot contains the address of the attribute

list associated with that level, and the
address of the slot for the containing
level.

The following attributes are processed:

DIMENSION: dimension table entries (see
Appendix C.8) are created in the dictionary
and the source text is replaced by a
pointer to the entry. Fixed bounds are
converted to binary and inserted in the
table. A second file statement (see Appen-
dix D.8) is created at the end of the text,
for adjustable bounds, and a pointer to the
statement is inserted in the dimension
table. Identifiers -with identical . array
bounds share the same dimension table.
PRECISION: precision and scale constants
are converted to binary.

34

INITIAL: dictionary entries are created

for INITIAL attributes.

INITIAL CALL: second file statements are
created for INITIAL CALL attributes.

CHARACTER and BIT: fixed length constants
are converted to binary; a ccde byte marker
is 1left for * lengths (see Appendix C.8).
Second file statements (see Appendix D.8)
are created for adjustakle 1length con-
stants, and the source text is replaced by
pointers to the statements.

DEFINED: second file statements (see
Appendix D.8) are created and the source
text is replaced by pointers to the state-

ments.

POSITION: the ccnstant is con-

verted to binary.

position

PICTURE: a picture table entry (see Appen-
dix C.7) is created and inserted into the
picture chain; similar pictures share the
same picture table. The scurce text is
replaced by a pointer to each entry.

USES and SETS: USES and SETS attributes
are moved into dictionary entries, and
pointers to the entries rerlace the source
text.

LIKE: BCD entries are created for iden-

tifiers with the LIKE attrikute.

LABEL: if +the LABEL attrikute has a list
" of statement label constants attached, a
single dictionary entry is created. The

dictionary entry contains the dictionary
references of the statement label constants
in the list.

OFFSET and BASED: Second file statements
are made and text references are inserted
in the DECLARE statements for these attri-
butes.

AREA: Fixed-length specifications are con-
verted to binary; second file statements
are made for expressions; a code byte,
followed by the length of text reference,

is inserted in the DECLARE statement text.

All other attributes, identifiers, or

constants are skipped.

Phase EL (EK, EM)

Phase EL, consisting of mcdules EK, EL,
and EM, scans the chain of DECLARE state-
ments constructed by the Read-In Phase.

An area of storage kncwn as the attri-
bute collection area is reserved. This 1is

used to store information about the iden-
tifiers, and has entries of a similar
format to that for dictionary entries.

Complete dictionary entries are con-
structed for every identifier found in a
LECLARE statement. These identifiers can
le one of the following types:

1. Data Items (see Appendix C.H)

‘true’
(see

2. Structures (in this case, the
level number is calculated)
Appendix C.U4)

3. Label Variables (see Appendix C.U4)

4. Files (see Appendix C.7)

5. Entry Points (see Appendix C.2)

6. Parameters (see Appendix C.7)

7. Event Variables

8. Task Variables.

Identifiers appearing as multiple dec-
larations are rejected and a diagnostic
message is given.

associated with
three

The attributes to be
each identifier are picked up in
ways.

First, the
lowing the identifier are
attribute collection area.

attributes immediately fol-
stored in the

Secondly, any factored attributes and
structure level numbers are examined.
These are found by using the 1list of

addresses placed in scratch core storage by
Phase EI. Each applicable attribute is
marked in the attribute collection area,
and any other information, e.g. dimension
table address, or picture table address, is
moved into a standard location in the
attribute collection area. All conflicting
attributes are rejected and diagnostic mes-
sages are given.

Finally, any attributes which are
required by the identifier, and which have
not been declared, are obtained from the
default rules.

After the dictionary,-entry has been
made, further processing (e.g. 1linking of
chains, -etc.) must be done in the follow-
ing cases:

1. DEFINED data

2. Data with the LIKE attribute

3. Files

4. strings with adjustable lengths

5. Arrays having adjustakle bounds

6. GENERIC identifiers

7. Structure members

8. Identifiers with INITIAL CALL

9. Identifiers with the INITIAL attribute

After the declaration 1list has been
fully scanned and processed, it is erased.

Phase EP

Phase EP first conditionally marks later
phases as 'wanted' or 'not wanted,' accord-
ing to how certain flags in the dictionary
are set on or off. This assists in the
load-ahead technique.

The entry type 1 chain in the dictionary
is then scanned. For each ERCCEDURE entry
in the chain, each entry lakel is examined
for a completed declaration of the type of
data the entry point will return when
invoked as a function. If +this has pre-
viously been given in a DECLARE statement
nothing further is done, ctherwise entry
type 2 and 3 dictionary entries are con-
structed from default rules (see Appendix
C.2). If this default data description
does not agree with the description derived
from the PROCEDURE or ENTRY statement, a
warning message is generated.

At each PROCEDURE entry, the chain to

the ENTRY statement entry type 1 is fol-
lowed. Each statement is treated 1in a
similar manner to that fcr a PROCEDURE

entry type 1.

The CALL chain is then scanned and, at
each point in the chain, the dictionary is
searched for the identifier being called.
If the correct one is not found, a dic-
tionary entry for an EXTERNAL procedure is
made (see Appendix C.2), using default
rules for data description. PRefore making
the entry, the identifier 1is checked for
agreement with any of the built-in function
names. If there is agreement a diagnostic

Section 2 (Compiler Phases): Dictionary Lcgical Phase 35

message is generated, and a dummy diction-
ary reference is inserted.

If an identifier is found, it is exam-
ined to see if it is an undefined formal
parameter. If it is, the formal parameter
is made into an entry point, again using
default rules for data description. If it
is not, or if the declaration of the formal
parameter is complete, the type of entry is
checked for the legality of the call. A
diagnostic message is generated if the item
may not be called. 1In all cases, the item
called is marked IRREDUCIBLE if it has not
previously been declared REDUCIBLE.

Phase EW (EV)

Phase EW 1is
only if any LIKE attributes appear
source program.

an optional phase, loaded
in the

This phase scans the LIKE chain which
has been - constructed by Phase EK, and
completes the dictionary entry for any
structure containing a LIKE reference.
When a structure in the LIKE chain is

found, its validity is checked, and dimen-
sion data and inherited information are
saved. The dictionary is scanned for the

reference of the "likened"™ structure and
the entry is checked for validity.

This dictionary entry (see Appendix C.u4)
is copied into the dictionary, with altera-
tions if there is a difference between the
original structure and this structure with
regard to dimensioned data. If both struc-
tures have dimensions a straight copy is
made; if the structure with the LIKE attri-
bute has dimensions and the likened struc-
ture has not, the dimension information is
added to the copy; if the structure with
the LIKE attribute is not dimensioned and
the likened structure is, then the dimen-
sion data is deleted from the copy. Inher-
ited data is added to the copy. If an
error is found, the structure with the LIKE
attribute is deleted and a base element
copy of the master structure is inserted
instead. Where copies of entries occur
which refer to dimension tables with varia-
ble dimensions, the dimension table entry
is copied, and new second file dictionary
entries and statements are created. Simi-
lar entries must be made if the structure
item has been declared to be an adjustable
length string, or has been declared with
the INITIAL attribute.

Finally, the newly completed structure
is scanned by the ALIGN routine in phase
EV, to provide correct explicit/inherited/
default alignment attributes for its base
elements.

36

Phase FY

Phase EY is an optional phase which

processes all ALLOCATE statements.

The second file is scanned first and all
pointers to the dictionary are reversed.
All ALLOCATE statements using the DECLARE
chain are then scanned, and the dictionary
references of allocated itemws are obtained
by hashing the respective BCD of each item.
The attributes given on the ALLOCATE state-
ment for an item are collected together.

A copy of the dictionary entry of the
allocated item is then made (see Appendix
c.4), and the ALLOCATE statement is set to
point to it. The dicticonary entry is
completed by including any attributes given
on the ALLOCATE statement, and copying any
second file statements from the. DECLARE
chain which are not overriden by the ALLO-
CATE statement.

In the case of an ALLOCATE statement in
which a based variable is declared, no copy
of the original dictionary entry is
required. The BCD is rerlaced by the
original dictionary reference.

All pointer qualified references in the
text are checked to determine that the
qualified variable is based. For every
occurrence of a variable with a different
pointer a new dictionary entry is made. If
the variable is a structure the entire
structure 1is copied. A PEXP second file
statement is made for the pointer and the
'defined' slot in the new dictionary entry
is set to point to it instead of to the
declared pointer.

The BCD of the pointer and the based
variable in the text are rerlaced by the
new dictionary reference fcllowed by pad-
ding of blanks which will ke removed by
phase FA,

The based variable can be the qualified
name of a structure member. If this is so,
the name is checked for validity. Only the
first part or lowest level cf the gqualified
name in the text is replaced by the dic-
tionary reference of the wember. It is
preceded by a special marker to tell phase
FA that a partially replaced name follocws.

Phase FA

Phase FA scans the text sequentially.
1f, during the scan, qualified names are
found with subscripts attached, they are

reordered so
appears after the

that a single subscript list
base element name. The

each dimension. It is then added to the
AUTOMATIC chain for the appropriate block.
Iterative DO loops are constructed, with
the temporaries iterating between the upper
and 1lower bounds of that particular dimen-
sion. Base elements are assigned, with the
temporaries as subscripts, and with scalars
remaining unchanged. END statements are
created for the DO loops, and SELIL, state-
ments for the temporaries. The statements
which bhave been created are nested within
the original statement.

Phase HK

The purpose of Phase HK 1is +to detect
array or scalar assignments, possible array
expressions in I/O0 1lists in GET and PUT
statements, and nested statements, in par-
ticular nested assignment statements.

The leftmost array in an expression, or
the leftmost array or scalar in an assign-
ment is used as a basis for comparison, and
if similar dimensions or bounds are not
found in the array references, diagnostic
messages are issued. Any expression con-
taining only scalars is left unchanged.

For unsubscripted arrays which are
equally spaced in core only .one temporary
is bought. For all other arrays a tempora-
ry . is bought for each dimension, except in
the case of certain partially subscripted
arrays where the number may be minimized.
Each temporary will be added to the AUTO-
MATIC chain for the appropriate block. If
the ON-condition name SUBSCRIPTRANGE is
enabled for any statement, a temporary will
be bought for each dimension in all cases.
Iterative DO loops are constructed: for an
unsubscripted array expression of dimen-
sionality N, the temporary will iterate
between the 1lower bound of the Nth dimen-
sion and an evaluated product so that all
elements
for other arrays the temporaries will iter-
ate between the lower and upper bound of
the particular dimension of the array. The
assignment statement is added to the output
string with additional subscripts where
necessary. End statements are created for
the DO loops, and SELL statements for the
temporaries. The statements which have
been created are nested within the original
statement.

The
checked.

syntax of pseudo-variables is also

Section 2 (Compiler Phases):

of the array are processed; while

Phase HP

scans the source text for
references to items defined using iSUBs.
For each reference found, the subscripts
are computed for the base array correspond-
ing to the subscripts given for the defined
array.

Phase HP

The subscripts of the defined array are
assigned to temporaries - specially created
for this purpose, which are then used to
replace the iSUBs in the defining subscript
list. The base array, with the subscript
list so formed, replaces the defined array
in the text.

THE TRANSLATOR LOGICAL PHASE

The Translator Phase ccnsists of two
prhysical phases, the stacker phase and the
generic phase. The purpose cf the Transla-
tor is to convert the output from the
Pretranslator into a series of "triples"
(see Appendix D.4). A "triple" is in the
form of an operator followed normally by
two operands.

The translation is achieved by using a
double stack, with one part for operators,
and the other" part for operands, and
assigning two weights +to each operator.
One weight (the stack weight) applies to
the operator while it is in the stack, and
the other weight (the compare weight)
applies when the operator is obtained from
the input string.

When an operator is obtained from the
input string it 1is compared with the top
stack operator. Depending on the result of
the comparison, one or other of the two
operators is switched on to determine what
action is next to be performed. Apart from
some special cases, this action is usually
either to continue to fill the stack, or to
generate a triple. The special cases lead
to various manipulations of the stack
items, after which the translation process
continues.

For the purposes of translation, the
input text to the translator is considered
to - consist of operators and operands only.
This means +that I/O options, etc., are

. regarded as operators.

the text string con-
sists of operands " and orerators. All
statements start with an operator to indi-
cate a statement number or label, followed

After translation,

by the statement type, which may be a
single operator, as in the case of RETURN
or STOP, or which may be an operator such

Translator Logical Phase 43

as a function or subscript marker, followed
by a list of arguments. This list may also
include compiler generated statements,
e.g., DO 1loops for I/O 1lists. All I/0
options are regarded as operators and
require no markers before them. The end of
the source text will be marked by a special
operator, and compiler generated code,
which may follow this end-of-program mark-
er, will appear between the marker and the
special second-end-of-program marker. The
end of a block of text will be marked by an
ECB operator. The program is now assumed
to be syntactically correct.

Phase IA

Phase IA rearranges the source text into
a prefix form, in which parentheses and
statement delimiters have been removed, and
the operations within a statement have been
so arranged that those with the highest
priority appear first.

As operators and operands are encoun-
tered, they are stored in stacks. Tables
give the priority of each operator as it
appears in the input text and in its stack.

When an operator 1is found during the
scan of the source text, its compare weight
(see Appendix D.4) is tested against the
stack weight of the top operator in the
stack. If the compare weight is the lesser
of the two, then action is taken according
to the compare operator. This is referred
to as the compare action. Similarly, 1if
the compare weight for the current operator

found in the scan is greater than or equal
to the stack weight of the top stack
operator, action is taken according to the

top stack operator. This is referred to as
the stack action. Normally, the compare
action is to place the compare operator in
the stack, and to continue the scan, plac-
ing any subsequent operand in the stack
until another operator is found. The nor-
mal stack action is to generate a triple,
consisting of the tor operator in the stack
and the top two operands, eliminating the
items from the stack, and inserting a
special flag as the operand of the triple
which is now at the top of the stack. The
source (compare) item is then compared with
the new tor stack item.

The output text of the stacking phase is
in the form of a series of triples, 1i.e.
statement types with no operands, and oper-
ators with one or two operands. If the
result of a triple operation is to be used
in a later triple, the appropriate result
is flagged accordingly.

4y

Certain phases are marked wanted or not
wanted at this stage. If the source text
contains an invocation by CALL or function
reference, Phases IL and IM are marked
wanted. If it does not, Phases IL, IM, IN,
10, IP, IQ, MG, MH, MI, MJ, MK, MM, MN, and
MO are marked not wanted. Phases MB and MC
are marked wanted when the source text
contains pseudo-variables or multiple
assignments; otherwise, they are marked not
wanted. The DO loop processing phases (LG
and LH) are marked in co-operation with the
dynamic initialization phases (LB and IC).
If LB and LC are requested, the marking of
IG and LH is 1left until that stage of
compilation; otherwise, LG and LH are
marked by Phase IA independently.

When ALLOCATE and FREE statements occur,
phase NG 1is marked wanted. When LOCATE
statements occur, phase NJ is marked want-
ed.

Phase IG

Phase IG is an optional phase which is
loaded to process array and structure argu-
ments to built-in functions. When aggre-
gate arguments are given for kuilt-in func-
tjons they are expanded by the structure
and array assignment phases so that the
built-in functions appear as base elements,
subscripted where necessary.

Phase GP examines these arguments, and
ascertains whether it 1is necessary to
create a dummy. If it 1is necessary, a
scalar dummy is created, but the assignment
of the argument expression is not inserted
in the text, as this would ke an invalid
aggregate assignment.

Phase IG examines the text for a BUY
statement for a dummy for an aggregate
argument to a built-in function, and then
inserts an assignment triple in the correct
place in the text.

Phase IL

This phase immediately precedes the main
generic phase. Its function is to obtain a
block of scratch storage and place the
entire built-in function table in that
area. The starting address cf this table
is then placed in a register, and control
is released to the main generic processor.

Phase_ IM

Phase IM scans the source text for
procedure invocations by a CALL statement,
procedure or library invocations by a func-
tion reference, and assignments to
"chameleon" dummy arguments (see Phase GP).

Any procedure which is generic and is
invoked by a CALL statement or function
reference is replaced by the appropriate
family member. TIf the invoked procedure is
non-generic, it 1is ignored. A generic
library routine invoked by a function ref-
erence 1is also replaced by the appropriate
family member.

The arguments passed to library routines
are checked for number and type, and a
conversion inserted where necessary and
possible.

The type and location of the result of
all function invocations is placed in the
text which follows the end of the text
which invoked the function. The resulting
type of an expression assigned to a
"chameleon” dummy is determined and set in
the dictionary entry which relates to the
dummy .

Phase IT
Phase IT scans the source text for
function triples and, in particular, the

built-in functions for which code will be
generated in-line, Further tests are made
to detect the functions which, according to
the method used to generate in-line code,
are optimizable. This applies only to the
SUBSTR, UNSPEC, and INDEX functions. All
references to ‘'chameleon' temporary assign-
ments within the scope of these functions
are removed subject to certain restrictions
imposed by the function nesting situation.

Phase IX

that POINTER and AREA
specified by the

Phase IX checks
references are used as
language. This phase 1is 1loaded only if
POINTER or BAREA references are " found,
declared either explicitly or contextually.
Error messages are produced if errors are
found and the statement in error is erased,

Data type triples in the text are
scanned and a stack of temporary results is
created containing the values:

Section 2 (Compiler Phases)‘:

X'40*' for POINTER
X'02' for AREA
X'00" for any other data type

The maximum permitted number of tempo-
raries at any one point in a program is
200. The compilation is terrinated if this
figure is exceeded.

Phase JD

Phase JD scans the text for concatena-
tion and unary prefixed triples with con-
stant operands. These are evaluated and
the results are placed in new dictionary
entries. The references are passed through
a stack into the corresponding result slots
in the text.

THE_AGGREGATES LOGICAL PHASE

The Aggregates Phase consists of three
physical phases, the preprccessor (phase
JI), the structure processor {(phase JK) and
the DEFINED chain check (phase JP).

The structure processor phase carries
out the mapping of structures and arrays in

order to align elements on their correct
storage boundaries.
The DEFINED chain check ensures that

items DEFINED on arrays and structures can
be mapped consistently.

Phase JI

The first function of phase JI is to
obtain scratch storage in which the text
skeletons contained in phase JJ are to be
held. Phase JJ is then 1lcaded, and its
contents are moved to the scratch storage
for subsequent use by phases JI and JK.
Phase JJ 1is then released and control is
returned to phase JI.

The main function of fghase JI 1is to
expedite data interchange activities. A
scan of static, automatic, and controlled
chains 1is performed. The chains are reor-
dered so that all data variables appear
before non-data items. Adjustable PL/I1
structures and arrays are detected. Each
entry in the COBOL chain is mapped as far
as possible at compile-time, removed from
the chain, and placed in the appropriate
AUTOMATIC chain.

Aggregates Logical Phase 45

Phase JK

This phase scans-the AUTOMATIC, STATIC,
and CONTROLLED chains for arrays, struc-
tures (including COBOL structures), adjus-
table 1length strings, DEFINED items, AREA,
and POINTER arrays and structures, TASK and
EVENT arrays, and TASK and EVENT arrays in
structures.

For - the base elements of structures
without adjustable bounds or string
lengths, the following calculations are
made:

The offset from the start of the major
structure

The padding required to align the ele-
ments on the correct boundary

All multipliers of arrays of struc-
tures.
For all minor structures and major

structures the following calculations are

made:
Size

The offset from the preceding alignment
‘boundary with the same value as the
maximum appearing in the structure

Where a structure contains adjustable
bounds or string lengths, code is generated
to call the Library at object time.

For arrays, the multipliers-'are calcu-
lated, unless the array contains adjustable
items, in which case the Library performs
the calculations.

For adjustable structures, arrays, or
strings, code is generated to add a symbol-
ic accumulator register into the virtual
origin slot of the dope vector, and the
accumulator register is incremented by the
size of the item.

Calculations are made in a similar
fashion for arrays of strings (in struc-
tures or otherwise) with the VARYING attri-
kute. In addition, code is generated to
cet up an array of string dope vectors
which refer to the individual strings in
the array using the dope vector. Code is
also generated to convert the original dope
vector to refer to the array of string dope
vectors, instead of to the storage for the
array. ' '

The routine which generates code for
arrays of VARYING strings is also used to
generate code for the initialization of
arrays of TASK, EVENT, and AREA variables.

46

DEFINED
lowing way:

items are processed in the fol-

Code is generated to set the wmultipli-
ers and virtual origin address of cor-
respondence defined arrays without
iSUBs in the dope vector of the DEFINED

items from the defining kase dope vec-
tor.
Code 1is generated for cverlay DEFINED

items if they do not fall into the
class which is to be addressed direct-
ly. The code first maps the DEFINED
item, if necessary, calculates the
address of the start of the storage to
be used by the DEFINED item, and final-

ly, relocates the DEFINED item using

this address.

Dope vector descrirtor dictionary
entries and record dope vector dictionary

entries are made for items which need to be
mapped at object time, or which appear in
RECORD-oriented input/output statements.

Phase JP
Phase JP scans the DEFINED chain, and
differentiates between the fcllowing:
1. Correspondence defining
2. Scalar overlay defining

3. Undimensioned structure overlay defin-

ing
4. Mixed scalar-array-structure-string
class overlay defining
In correspondence defining, this phase
differentiates between arrays of scalars
and arrays of structures. It also checks

that the elements of the defined item may
validly overlay the elements of the base
belong to the same defining class, and that
the base is contiguous.

In scalar overlay defining, this phase
checks that the defined iter mdy validly
overlay the base.

For undimensioned structure overlay
defining, this phase checks that the ele-
ments of the defined item may validly
overlay the elements of the base.

For mixed scalar-array-structure-string
class overlay defining, this phase checks
that all elements of the defined item and
all elements of the base belcng to the same
defining class (bit or character), and that
the base is contiguous.

THE _PSEUDOQO-CODE TOGICAL PHASE

The Pseudo-Code Phase accepts the output
of the Translator Phase, and converts the
triples into a series of machine-like
instructions. The transformation into
pseudo-code is achieved by a series of
passes through the text; each pass removes

Section 2 (Compiler Phases):

Pseudo-Code Logical Phase 46.1

variables, subscripts, functions, and argu-
ment markers.

Phase LB

The purpose of Phase LR is to save space
during the expression evaluation phase,. LS.
It provides the initialization for Phase LS
ky obtaining 4,096 bytes of scratch storage
and setting stack pointers. The scan
phase, Phase LA, is initialized and Phase

«MP is mwarked.

The +translate table for scanning tri-
ples, and the constants for expression
evaluation are included in this phase and

are moved to the first 1K area of scratch
storage. Subroutines required by phase LS
are also moved into scratch core at this
time. Finally, control is passed to Phase
LS.

Phase LS

Phase LS scans the source text to con-
vert expression triples to pseudo-code. If
a triple produces a result, it is added to
the temporary work stack.

For the arithmetic triples +,-,%,/,%%,
prefix +, and prefix -, the operands are
combined to give the base, scale, mode, and
precision of the result. If conversion is

necessary, an assignment triple, with the
target and source types as operands, is
inserted in the text. In-line pseudo-code

is generated for all operators except *#*

and some complex type * and / operators.
In these cases, Library calling sequences
are generated. An intermediate result is

always produced and the triple is removed

from the text.

The operands of comparison triples GT,
GE, equals, NE, LE, and IT are combined and
converted as for the arithmetic triples.
In-line pseudo-code 1is generated and the
triple is removed from the text, unless
both operands are string type, in which
case a temporary is created. If the next
triple is a conditional branch, a mask for
branch-on-false is inserted. Otherwise,
the result is a length 1 bit string.

For the string triples CAT, AND, OR,
NOT, and string comparisons, if an operand
is zero, TMPD +triples, containing the
intermediate result from the top of the
stack, are inserted in the text after the
triple. The result is a CHARACTER or BIT
string or a COMPARE operator.

When subscript triples appear, a symbol-
ic register number is inserted in the

triple. The result contains the dictidnary
reference of the array and the symbolic
register.

For function triples, a description of
the workspace for the function result is
inserted in the TMPD triples which follow
the function triples. The function result
is added to the intermediate stack.

For add, multiply, and divide functions,
the function and argument triples are

removed from the text. Arithmetic type
in-line pseudo-code 1is generated, with
modifications for the precision and scale
factor, and the result is added to the

intermediate stack.

With pseudo-variable triples, a special
marker is added to the intermediate result
stack.

Oother triples which wray use an inter-
mediate result, are examined. If an oper-
and is =zero, two or three TMPD triples,
containing the intermediate result from the
top of the stack, are inserted in the text
after the triple. If Loth operands are
zero, the TMPDs for the second operand
precede those for the first operand.

Phase LV
Phase LV provides string handling facil-
ities for the pseudo-code phases.

It converts any type of data item to a
CHARACTER or BIT string, and an assignment

triple, with the target and source types
used as the operands. is inserted in the
text.

description is
string descrip-

A string dope vector
produced from a standard
tion.

Phase LX (LW, LY)

Phase LX consists of three modules, LW,
LX, and LY. Module LW acts as a pre-
processor for LX and LY, moving constants
into scratch core prior to 1loading the
string-handling modules.

Phase LX scans the source text to
convert string triples to pseudo-code. If
a result is produced it is added to a stack
of intermediate string results.

Section 2 (Compiler Phases): Pseudo-Code Logical Phase 49

For the comparison triples GT, GE,
equals, NE, LE, AND LT, both operands are
already string type. If one operand is
zero, the operand 1is obtained from the
associated TMPD triples. In-line pseudo-
code 'is generated if the operands are
aligned and are of known lengths less than
or equal to 255 bytes; otherxrwise, Library
calling sequences ' are generated. The
triple and any TMPD triples are removed
from the text.

In the case of the string triples cCaAT,
AND, OR, and NOT, the operands are convert-
ed to string type by phase LV. Zero
operands are obtained from associated TMPD
triples. In-line pseudo-code is generated
when operands are aligned and are of known
lengths 1less than or equal to 255 bytes.
For the CAT operator, the first operand
must be a multiple of 8 bits unless the
strings involved are less than or equal to
32 bits in length. In-line code is also
generated for the following cases involving
non-ad justable varying strings:

1. Character string concatenation of
varying strings with lengths less than
256 bytes.

2. Bit string operations for AND, OR,
NOT, concatenation, and comparison
where the strings are aligned and are
less than 33 bits in length.

Otherwise, Library calling sequences are
generated. The triple and any TMPD triples
are removed from the text, and the string
result is added to the intermediate result
stack. ‘

For TMPD +triples, if the intermediate
result described by tlie TMPD triples is a
string, a complete string description is
moved from the top of the intermediate
stack to the TMPD triples. If the TMPD
triples do not describe a string, they are
ignored.

In-line code 1is generated for the BOOL
functions AND, OR, and EXCLUSIVE OR, when
the third argument 1is a character or bit
string constant and the first and second
arguments are aligned and of known lengths
less than or equal to 255 bytes. Otherwise
Library calling seguences are generated.
Subscript and function triples may produce
intermediate string results.

Phase MB

Phase MB scans the text for pseudo-
variable markers and nmultiple assignment
markers. A stack of pseudo-variable

descriptions is maintained, together with

50

the left hand side descripticns of multiple

assignments when they occur. Pseudo-code
and triples are generated for pseudo-
variables and the left hand side
descriptions of multiple assignments are

put out in the correct sequence.

Phase MD

Phase MD uses the SCAN routine LA to
scan the text for ADDR and STRING built-in
functions for which it generates in-line
code. It appears before the normal func-
tion processor phase and rermcves all trace
of the in-line function. The general SCAN
routine passes control when these functions
are found.

For all cases of ADDR the generated code

establishes the start address of the argu-
ment. If structure name arguments are
present the structure chain is hashed for

the first base-element. For array names
the address of the first element is calcu-
lated.

If the
is contiguous in core, and its
known at compile~time,
assignment 1is generated. Ctherwise the
library routines IHESTGA and IHESTGB are
called to produce the concatenated length
and to concatenate the elements of the
array or structure argument.

argument to the STIRING function
length is
an adjustable string

Phase ME

Phase ME identifies all invocations of
the SUBSTR function and pseudo-variable,
all UNSPEC, STATUS, and CCMPLETION func-
tions, and those invocations of the INDEX
function which can be implemented in-line;
and generates pseudo-code tc perform these
functions at object time. The scan of the
text 1is conducted by +the general SCAN
routine, and all trace of the invocations
of these functions is removed before the
normal function processor rhase is loaded.
When the end-of-program marker is encoun-
tered the terminating routine is entered.

Phase MG

Phase MG identifies functions which are
to be coded in-line, and generates, in
their place, the pseudo-code to perform the
relevant function. This rhase appears
before the normal function processor phase

and removes all trace of the in-line func-

tion.

The scan of the text is conducted by the
general SCAN routine, and control is handed

to the present phase when one of the
following functions is found:

ALLOCATION FLOOR BINARY

BIT IMAG DECIMAL

CEIL REAL FIXED

CHAR TRUNC FLOAT

COMPLEX PRECISION

CONJG

Control is also passed to this phase if
ABS is found with real arguments. The
arquments are collected, and the appropri-
ate routine 1is entered to generate the
pseudo-code. When the end-of-program mark-
er is encountered the terminating routines
are entered.

Phase MI

Phase MI identifies functions which are
to be coded in-line, and generates , in
their place, pseudo-code to perform the
relevant function. This phase appears
before the normal function processor phase
and removes all trace ot the in-line func-
tion.

The scan of the text is conducted by the
general SCAN routine and control is handed
to the present phase when one of the
following functions is found:

MAX MOD
MIN ROUND

If the number of arguments to the MAX or
MIN functions is greater +than three, a
Library call is generated.

Phase MK

Phase MK identifies functions which are

to be coded in-line, and generates, in
their place, pseudo-code to perform the
relevant function. This phase appears

before the normal function processor phase
and removes all trace of the in-line func-
tion.

The scan of the text is conducted by the
general SCAN routine, and control is passed
to the present phase when one of the
following functions is found:

DIM HBOUND

LBOUND SIGN

LENGTH FREE
Phase ML

Phase ML scans the source text for
generic entry name arguments to procedure
invocations.

Such entry names may be floating arith-
metic built-in functions c¢r programmer-
supplied procedures with the GENERIC
attribute. When one is found, the correct
generic family member +to - be passed is

selected by this phase, depending on the
entry description of the invcked procedure.

Phase MM

Phase MM scans through the source text
for procedure invocations ky a CAIL state-
ment, or for procedure or Library routine
invocations by a function reference.

Procedure invocations are replaced by an
external standard calling sequence, and
Library routine invocations are replaced by

an external or internal standard calling
sequence as appropriate (see Appendix
D.10).

If a CALL is accompanied by a TASK,

EVENT, or PRIORITY option,
IHETSA is loaded rather than IHESA,

library module
and the

parameter 1list is modified to include the
addresses of the TASK and EVENT variables
and the relative PRIORITY.
Phase MP

Phase MP reorders the BUY and SELL

statements involved in obtaining Variable
Data Areas (VDAs) for adjustable length
sStrings or temporaries, which were created
by Phase GK. On entering this phase, the
BUY triples precede the code compiled to
evaluate the length of storage requlred for
the VDA. This evaluation ccde is included
between further BUYS and BUY triples, which
themselves are between the BUY triple being
considered and its associated SELL triple.
Phase MP extracts these sections of code
and places them before the PBUY triple of
the adjustable string temporary. Since
such BUY triples may be nested, the phase
maintains a count to record the nesting
status.

Section 2 (Compiler Phases): Pseudo-Code Logical Phase 51

Phase MS

Phase MS scans the source text for
references to subscripted array elements.

If references are found, pseudo-code is
generated to calculate the offset of the
subscripted element in ‘relation to the
origin of the array. If necessary, further

pseudo-code is generated to check the sub-
script range.
Optimization of constant subscript

evaluation is carried out on arrays having
one subscript which is an integer constant,
and all following subscripts declared to

have fixed upper and lower bounds. This
applies to arrays with fixed-length ele-
ments.

Phase NA

Phase NA generates pseudo-code for the
following triples:

For PROCEDURE'
Library call 1is
routine.

and BEGIN' +triples a
generated to the FREEDSA

For RETURN triples a Library call is
generated, unless a value is to be returned
as the result of a function invocation, in
which case code is first generated to

assign the result to the target field, and

then the Library call is made. If the
function may return the result as more than
one data type, a switch would have been set
at the entry point to the function, and the
RETURN statement would test the switch
value, so that the data type appropriate to
the entry point is returned.

GOTO +triples either will be invalid
branches detected by Phase FI, in which
case they will be deleted, or they will be
branches to statement 1label constants in
the same PROCEDURE or BEGIN block. In this
case, they will be compiled as one-
instruction branches.

GOLN triples are compiled into one-
instruction branches to the compiler label
number in operand 2 of the triple.

A GOOB (Go Oout Of Block) triple is a
branch to a label variable, possibly
subscripted, or to a 1label in a higher
block than the current one (a branch to a
lower block is invalid). A call is gener-
ated to a Library epilogue routine, point-
ing at a double-word slot containing the
address of the 1label and the Pseudo-
Register Vector (PRV) offset (for a label
constant), or the invocation count (for a
label variable).

52

STOP and EXIT statements are implemented
simply by invocation of the appropriate
Library routine.

For IF triples, if the second operand is
an identifier, or the result of an
expression which is not a ccmparison, code
is generated to convert it to a BIT string,
if necessary. This BIT string is compared
to =zero, either in-line, or by a call to
the Library.

The second operand may ke a mask which
will have been inserted by the expression
evaluation phase as a result of the compay-
ison specified in the IF statement. This
mask is put into a generated ifstruction to
branch if the condition is not satisfied,
i.e. either to the ELSE clause or to the
next statement.

For ON triples, code is generated to set
flag bits and update the ON-unit address in
the double-word ON slot in the DSA.

For SIGNAL arithmetic condition triples,
in-line code is generated to simulate the
condition. For all other conditions, a
Library error routine is called.

REVERT triples generate code to set flag
bits in the double-word ON slot in the DSA.

Phase NG

Phase NG generates the calling sequences

to the Library for DELAY and DISPLAY and
WAIT statements.

It generates code to call the library
routines which handle ALLOCATE and FREE

statements whose arguments are BASED varia-
bles.

For DELAY statements, the argument has

to be a fixed binary integer, and, if
necessary, code is generated for conver-
sion.

For DISPLAY statements, the message must
be a CHARACTER string, or, if necessary,
converted to onme. A parameter 1list is
built up to pass to the Library.

For WAIT statements, the parameter list
is built up in WORKSPACE. It consists of

the address of the scalar expression
(converted to a fixed binary integer),
followed by the addresses of the event-

names that appear in each WAIT statement.
If the scalar expression option does not
appear, the address of the total number of
event-names is used.

When all data element descriptors and
symbol tables in the compilation have been
processed, all STATIC storage has been
allocated and the total size of the STATIC
control section is placed in a slot in the
communications region.

Phase PP

Phase PP extracts all ON condition
entries and places them at the head of the
AUTOMATIC chain. It then extracts all

temporary variable dictionary entries from
the AUTOMATIC chain and places them in the
zone following the ON conditions in the
chain.

All dictionary entries which are totally
independent of any other variable are
extracted, and also placed in the =zone
following the ON conditions.

The phase then extracts all dictionary
entries which depend upon some other varia-
ble in containing blocks or in the zones
already extracted, and places them in the
next following zone. Dependency includes
expressions for string lengths, expressions
for array bounds, expressions for INITIAL
iteration factors, and defined dependen-
cies. This 'is repeated recursively until
the end of the c¢hain. If some variable
depends upon itself, a warning message is
issued.

A special 2zone delimiter dictionary
entry is inserted between each zone in the
AUTOMATIC chain (see Appendix C.7). A code
byte is initialized in the delimiter to
indicate to Phases PT and QF whether its
following zone contains any variables which
require storage (i.e., it does not consist
entirely of DEFINED items, which do not
require storage), and whether or not the
following zone contains any arrays of VARY-
ING strings.

Phase_PT

Phase PT allocates AUTOMATIC storage,
scans the CONTROLLED chain, and determines
the size of the largest dope vector. It
scans the entry type 1 chain, and for each
PROCEDURE block or BEGIN block it allocates
storage for a DSA and compiles code to
initialize the DSA.

A two-word slot in the DSA is allocated
for each ON condition in the block, and
code is compiled to initialize the slot.
Space for the addressing vector and work-
space in the DSA is also allocated.

Two words are allowed for tasking infor-
mation in the DSA if the TASK option is ‘on
the external PROCEDURE of the compilation.

The AUTOMATIC chain is scanned and dope
vectors are allocated for the items requir-
ing them. Code is compiled to copy the
skeleton dope vector, and to relocate the
address in the dope vector.

Where there is a block with its DSA in
STATIC, dope vector initialization is not
performed for the variables in the first
region of the AUTOMATIC chain. Address
slots in dope vectors for variables in the
remainder of the chain are relocated.

Storage is allocated for addressing tem-
poraries type 2 and for addressing con-
trolled variables, and for the parameters
chained to the entry type 1

The first region of the AUTOMATIC chain
is scanned and storage allocated for double
precision variables, single precision vari-~
ables, CHARACTER strings and BIT strings,
in that order.

The first region of the AUTOMATIC chain
is scanned and storage allocated for
arrays, relocating the virtual origin. For
arrays of strings with the VARYING attri-
bute, the secondary dope vector is also
allocated and code is compiled to initial-
ize the secondary dope vector. Correctly
aligned storage 1is allocated for struc-
tures. If a structure contains any arrays
of strings with the VARYING attribute, the
storage for the secondary dope vector is
allocated at the end of the structure.

A pointer is set up in the AUTOMATIC
chain delimiter to the second file state-
ment which has been created.

The remaining regions of the AUTOMATIC
chain are scanned and code is compiled to
obtain a Variable Data Area (VDA) for each
region. Code 1is compiled to copy the
skeletons into the dope vectors and to
relocate the addresses in the dope vectors.
During this pass, any DEFINED items which
are to be addressed directly have the
storage offset and the storage class copied

from the data item specified as the base
identifier.
Phase QF

Phase QF, which constructs prologues,
scans that text which is in pseudo-code

form at this time with end-of-text block
markers inserted.

Section 2 (Compiler Phases): Storage Allocation Logical Phase 59

When a statement label pseudo-code item
is found, it is analyzed and one of three
things happens:

1. The item is saved if it relates to a
PROCEDURE statement

2. The item is omitted if it relates to a
BEGIN or ON block

3. The item is passed if it relates to
neither of the first two conditions

When a BEGIN statement is found, a
standard prologue of simple form is gener-
ated, and code is inserted from second file
statements (if there are any) to get the
DSA, either dynamically, or in the case of
eligible bottom-level blocks, by using the
supplementary LWS made available at ini-
tialization time. Code is also inserted to
initialize the DSA and to allocate and
initialize any VDAs.

When a PROCEDURE statement is found, it
is first determined whether it heads an ON
block or a PROCEDURE block. If it is an ON
block, a standard prologue (similar to that
for a BEGIN block) is generated. If it |is
a PROCEDURE block, a specialized prologue
is generated. This takes account of the
manner of gétting the DSA, the number of
entry points, the number of entry labels on
a given entry point, the number of paramet-
ers on each entry point, and whether the
PROCEDURE is a function.

Prologue code is generated for AUTOMATIC
scalar TASK, EVENT or AREA variables, in
order to perform the initialization
required when these variables are allocat-
ed.

The code generated by the prologue con-
struction phase is partly in pseudo-code
and partly in machine code. The machine
code (which is delimited by special pseudo-
code items) has the same form as the code
produced by the Register Allocation Phase
(see Appendix D.7).

DSA optimization is performed under
certain conditions (see Appendix H).

At the end of the prologue, the state-
ment label item saved earlier is inserted
to mark the apparent entry point. Code is
produced to effect linkage to BEGIN blocks
in such a way that general register 15
contains the address of the entry point,
and general register 14 contains the
address of the byte beyond the BEGIN epilo-
gue.

At the end of the text, any text blocks

that are not needed are freed, and control
is passed to the next phase.

60

Phase QJ

Phase QJ scans the text
FREE, and BUY statements.

for ALLOCATE,

Oon finding an ALLOCATE statement, a
routine is called which does a 'look ahead'
for initialization statements associated
with the allocated variable, e.g., adjusta-

ble array bounds or adjustakle string
lengths, and places the text references of
each statement in the dictionary entry

associated with each statement.

If the allocated item has a dope vector,
code is generated to move the skeleton dore

vector generated by Phase PH into a block
of workspace in the DSA of the current
block.

Any adjustable bound expressions or

string length expressions are then extract-
ed from the text references, and the
expressions are placed in-line in the text.

Any information required from previous
allocations (specified by * in the ALLOCATE
statement) is extracted from the previous
allocation, and copied into the worksgace.

Code generated by Phase JK to initialize
multipliers, etc., is extracted and placed
in-1line, after first loading the variable
storage accumulator with the dope vector
size. Phase JK generates code to increment
the accumulator register by the size cf the
item.

If the
ers, code is
accumulator
pilation time.
than 4,096,
dictionary entry, which 1is
code.

item has no adjustakle paramet-
generated to increment the
by the size calculated at com-
If this size 1is greater
Phase JK generates a constant
used in this

If the item has any arrays of varying
strings, the size of the array string dope
vector is added to a second accumulatcr
register. Code is generated to add the two
accumulators into the second one, which is
a parameter to a Library rcutine. A rou-
tine is then called which extracts the
Library call inserted by pseudo-code and
places it in-line in the text.

code is inserted after the Library call
to initialize the dope vector in workspace
to point to the allocated stcrage. Code is
generated to transfer the dope vector from
the workspace to the allocated storage.

The code generated by phase JK to ini-
tialize arrays of varying strings, tasks,
events, and areas is then inserted in the
output stream.

Phase RA

Phase RA scans the text for dictionary
references, the beginnings and ends of
PROCEDURE and BEGIN blocks, and the start-

ing points of the original PL/I statements.

A dictionary reference, when found, 1is

decoded into a word-aligned dictionary
address and a code. These axe used to
determine what is being referenced. The

corresponding object time address
offset and base is then calculated.

as an

If the address required has an offset
less than 4,096 and a base which is either
an AUTOMATIC or STATIC data pointer, no
extra instructions are generated. If this
is not so, extra instructions are inserted
in the text stream to calculate the
required address. The calculation of this
address is broken down into logical steps
in a 'sten table.' On completion, the table
is scanned backwards to determine whether
an intermediate result has been previously
calculated. The steps which have not been
previously calculated are then assembled
into the pseudo-code.

Section 2 (Compiler Phases):

The compiled code is added either to the
output stream or to a separate file. The
code in the separate file is terminated by
a store instruction to save the calculated
address. The “extra “"insertion file" is
placed in the prologue of the relevant
block by the next phase. Instructions are
stored in-line if the referenced item is
CONTROLLED, if it is a parareter, if fewer
instructions are required to recalculate
the base rather than 1locad the stored
address, or if the reference itself is in
the prologue.

If no addressing code is generated, a
special item is put in text to tell phase
RF what base to use.

All relevant information for PROCEDURE
and BEGIN blocks is stacked and unstacked
at the start and end of the blocks respec-
tively.

At the start of PL/I statements, code is
compiled to keep the required PREFIX ON
slots 1in the Dynamic Storage Area updated.
On meeting the pseudo-code error marker,
the <calling sequence to the Library error
package ‘is generated, and the error marker
removed.

Register Allocation Logical Phase 61,1

If the STMT option has been specified,
code is generated at the start of each PL/I
statement to keep the statement number slot
in the current DSA up to date.

Phase RF

Phase RF scans the text for register
occurrences, implicit and explicit, and the
start and end of PROCEDURE and BEGIN
blocks. At the beginning of PROCEDURE and
BEGIN blocks all relevant information is
stacked, and is 1later unstacked at the
corresponding end.
classified as

Registers are assigned,

symbolic, or base.

Assigned registers require the explicit-
ly menticned register to be used. If that
register is not free it is stored. Symbol-
ic registers may occupy any register in the
range 1 through 8. An even-odd pair may be
requested. Base registers may occupy any
of registers 1 through 8.

When a register is requested, a table of
the contents of registers 1is scanned, to
determine whether the register already has
the required value. If it does, that is
used. If it does not, and it is not an
assigned register, a search is made for a
free register and this is allocated if one
is found. Should no register be free, a
look-ahead is performed to determine which
register it is most profitable to free.

If a register contains a base it need
not be stored on freeing. If a register
contains a symbolic or assigned register,
it may require to be stored when freed,
depending upon whether it has had its value
altered since any storage associated with
it was last referenced.

At a BALR (Branch and Link) instruction
it is insured that all the necessary param-
eter registers are in physical registers,
and not in storage.

No flow trace is carried out by the
compiler. Therefore, the register status
is made zero at branch-in and branch-out
points. BAn exception is at a conditional
branch. Here the registers are not freed
after having been saved.

instructions are
At a specific

Any coded addressing
expanded when found in-line.
"insertion point" in a prologue, any
addressing instructions in the "insertion
file"™ are brought in and expanded.

62

THE FINAL ASSEMBLY LOGICAL_ FHASE

The Final Assembly Phase converts the
pseudo-code output of the register alloca-
tion phase into machine code, the principal
functions being the substitution of machine
operation codes for pseudo-code operations,
and the replacement of PL/I and compiler
inserted symbolic labels ty offset values.

Loader text 1is generated for program
instructions, DECLARE control blocks, and
OPEN file control blocks, initial values
defined in the source program; parameter
lists, skeleton dope vectors, symbol
tables, etc. ESD and RLD cards are gener-
ated for external names and pseudo-
registers. An object listing of the code
generated by the compiler is produced if
the option has been specified by the source
programmer.

Phase TF

Phase TF scans the text, assigns offsets
to compiler and statement labels, and
determines the code required for instruc-
tions which reference labels.

The size of each procedure is determined
and stored in the PROCEDURE entry type 1.
A location counter of machine instructions
is also maintained.

Phase TJ

Phase TJ scans the text until no further
optimization can be achieved in the final
assembly.

A location counter is maintained for
assembled code, and offsets are assigned to
labels.

The size of each procedure is determined
and stored in the PROCEDURE entry type 1.
The amount of code required for instruc-
tions to reference labels is also deter-
mined, while attempting to reduce this from
the amount estimated by the first assembly
pass.

This phase also attempts to reduce the
number of Move (MVC) instructions by
searching for consecutive MVC instructions
which refer to contiguous locations.

Chart EP.

Phase EP Overall Logic Diagram

Aok ok
EP
* AL*
* Ok
*
. NOTE:
.
: [NPUT FRCH PHASE EG IE THERE
PHS MRK X ARE NC DECLARE STATEMENTS
ke koA | %ok kokok ok ko
3 CONDITIONALLY *
% “MARK PHASE
* WANTED AND #
* NOT WANTED *
* * FEiT
Aok Aok Kook ook & * *
. * B2 *
° *» *
. o’ Rk
3 N
N N 00600000000000608000000008000000000000000000000000000
N . .
EPL20 % LBPROC %- EPLTS % o%o EPL 100 .
ok ko G] Kk dokokokkokdkcl 2%% B4 *gq okl kB 5 ok ok ok Rtk koK
* 0 10 * * * % CONSTRUCT = * o * *
* FIRST ENTRY * * 60 T0 OICT % * CENTRIES % o*" LAST #*o NO * 60 T0 DICY *
* 1 #oocoaeoaX ENTRY FOR %ooooccooX* TYPE 2 AND *occcocooX%e CABEL o¥oosceocoX® ENTRY FOR *
% ENTRY, TYPE 1 # » FIRST LABEL * * 3 [FONOT % *, ok * NEXT LABEL %
CHAIN * * * * THERE * *o o¥ * *
Aok ok oo i kokolokoR KOk % *o o¥ st e sl ok o R olokok Rk &
#"VES
N
.
M
00500080000000900000000000008800080003900000008800000
o
EPL4O] o¥e
ek okRC 2 kA Rk kAR kA 3 *q
* GO TO NEXT * ok *o ok
% CENTRY IN_ % ok *o YES %
% PROCEQURE %oocccocooX*s PROCEDURE _o¥ecooX* B2 *
% ENTRY CHAIN * *o o w O
* * *q ¥ Aok
Aok opdokokod ok R A okok Rk
0006000000006 0080000000000000080800080000000000000
EPL! N0
o%e
*2Q#*E%*###*t*!** ek ote ok) 4 okt ook dofok dkok D5 *,y
* GET TEXT o* % oF *o
¥ oRECRRENCE: ix TES ke e N xe 15EnTENER RN xx¥ PROCEDURE —o%
6000000000000000000000000000000000%0 secsoo o 0000000X%e o
* CALL CHAIN % *q * * *o o
* * *, * * *q o*
e ookl ook ok deodeoledold ok ook ok sk ok ok K kol ok Ko H*ES
Y
ARKK Rk
* * *
£ El fuXe ToXk B2 *
ELE L] X Akokk
o¥e) o*eo EPL340 o%o COICEN
El *o Aok £ 2ok bbb donokok E3 *o E4 He e e ok 65 ok okok ok ok ok ko
ok %o * SCAN T * o AN LT #MAKE _D1CTIONARY*
%" END %c NO % oIgTIoNARY o o NO +IDENTIFIER %o NO * ENTRY_ USING *
%2 OF CALL o¥eoooccsseX* R THE *cccecsnoX¥e KNOWN l#coceeceoxss SUILT-IN' C¥seoceosek DEPAULT R LES *
o CHAIN _o % IDENTIFIER * * * *oFUNCTION o * FOR DATA TYPE *
* *o o¥ *o o % * *
* AR R REA AR IRk *, o % *o o* ActeokaoR koK Ak Rk
Y *°YES *°YE o
N . .
° . .
. H .
EC_TO . o .
Tlonacy cr % ° M
TIONAL) OR o %o X EPL360 %
N-OPTIONAL) F3 *o siafeote o A 4 ookl Ao ook ko ok Aok F 5ol ok ok ok ok
ok *o % GENERATE * *x REPLACE *
o IS *o NO * ERROR * F L *
=X CALL "*oecssosoX® MESSAGE . * * DICTIONARY %
%o VALID _o* & INSERT DUMMY * * REFERENCE *
*o ok # REFERENCE * * *
*y * gk oo kol ok 8ok o bkook ok ootk o ook sk Aokokolok R
*°ves . o
N . .
3 A .
N o o
. M .
o s .
EPL360 % EPL290 % M
Fookodok G 3k Rokokdokotolok ¥ ok ek G 4 ot ok ook ok o
% REPLACE * * GET TEXT .
+ oo hofkay 3 ke CREERENET Ex :
csossooe coses0ss0000c0000
* REFERENCE * Y e
* * * CALL CHAIN
ol feoR ok kA kR R K ok okl ok R ROk kR
N
o
.
%
Aokok
* *
x E1 *
* *
*hkk

Section 3: Charts and Routine Directories

117

e Chart EW. Phase EW Overall Logic Diagram

Ao ok
REW *
AL%
*

*

.

.

.

EWBEGN X ’
FrranLrtosteats
* INITIALIZE, *
* GET SCRATCH =*
* STORAGE ANLC #
* FIRST ITEM IN *
* LIKE CHAIN *
Aok ok dok Rk Rk ok)

ox o
* .
* Bl *oXe
* o
* O

*kk
T
:uusnﬂuu*u
*
* SAVE ADDRESS *

* CODE BYTES *
: LEVEL ETC :
ok R AR AR F
.
.
.
.
-
.
CESCN X
P T T P E T
* *
:523: DICTIUNARV‘
‘: WITH SAHE SCE *
b IAT.
.
.
.
°
%
o¥e EWERNC o¥o EWEL DM
01" %, AR 2B ARk R KAk RAHAAD I NS BR RN A *, okl de D) kAR AR Kok
o* 1S *o * PICK Uuf * ;g * copy EgTRV uf
o* THIS A *e NO * SET gP ERROR * * ?TRUCTUR * o¥ TH A * THE F?éNT *
VAEID s*¥eoc00000 Xk 0DE ¥o000eecaX* WITH THE % KE *s00o0e0eX®e INTO SCRATCHe *
.STRUCTUREo * * * ATTRIBU * *o ‘TﬂUCTURE * OEFAULT
*o ok * * * e' * VALUES
e oX HRRERE EETTr *o T
* YES »° VES °
. ° o
. o o
. . o
% . .
° o
EWNDOLK o¥g EWORDM o¥e EWCQOPY X FHHSCN X
El. %, * FRAREE JhA Rk ddok ok E4 4
¥ [? *o TH1§ * * SET yp * * PUT %OPV &NTD *
o% ORIGINAL *o NO ﬂ;N YES *COPY STRUCTLRE # *ERRCR MESSACE, * * DICTIONARY, *
cooX¥o STRUCTURE -"‘--....e.X*. STON o¥caocnoeeeX® ELEMENT INTO * * CHANGE ENTRY %Xoo0c0eac% UPNATE
. %o DIMENS-.o¥* * SCRATCH * * 0 A CR * * STRUCTSR: AND *
. *o IONED. * * * ENTRY * * HASH CHAIN
M *o o ¥ 2O R kK * * # oo otk
. * YES ° o
o . o N
. . o %
. - o)
. M M EAak
. X ° * *
o« EWELTS o¥ EWONDM X * J2 *®
. Fl ok AARRAETHRE AN B S * *
° «*1S T * * CALCULATE NEW * bbb
o* ELEM * NUMBER 9F *
*e DIMENS ° * * CIMENSIONS, *
*o . * * PICK up *
. *o . * *DIMENSION TABLE*
.- *a .
. * . °
° . . e
. . . o
. . .
. . °
. - X
«EWCOPY X ° o¥,
o RRRRG LA . G3 %, HRAAEG QA AR R
° ° o¥* ARE ’OSCAN DIMFNEIDN *
'COPV STRUCTURE * ° X NO .* THERE ANY *, YES TA
* ELENENT INTO © o evcecescccccocecccccccccooncs¥o VARIABLE o*ccouo-o‘(* ABLE
* SCRAT! * .. *o DIMENS— % X "DIMF“ISIGN ENTRV*
* * . . %o JONS o * ° * *
B T S *o ok o REEERRARS AR
. e o * o °
. . . o °
° eXooeosoooecs o ° °
o
. coescecccanas o °
o . . o
»EWINCH X EWELDM X X
s HERALESL FHRAKH 28 4Rk * o
. * MAKE DICT * CCPY ENTRY. * P *
R S MO e 1 e Eotgle
. coosecsst
. : HASH CHAIN ‘ ﬂ:m : E :
P FARRA SRR ARD AR A AR
.
. L I o M
. * * e °
. * Jl *oXe * J2 *e00 N
° * * . e
. *EEE X LEL L] % X
° o¥e o¥o EWEND *,
. J1° s JE *q FA A B R A AA AR AR
. o*[S Tng*- o*]S THIS*. * * ‘*'*
o NO o% THE END *' o* THE ENC #, YES END ROUTINE * Sxo VES %
ceso¥e A NEW sceX*s OF THE LIKE o*eeseccooX* TO RELEASE * n“-n.qx"‘ J1 *
e STRlK:TURE. ° o, CHAIN o *SCRATCH STORAGF‘ o ¥ *
o® . *, ¥ * * asrn
“%o ot . 1o o PP
* YES ° * NC °
o o . .
. . M o
° ° X X
. . ey P
. . *» * EY
ALIGN X ° * Bl * * Al* NOTE:
BRARAK L EEEER DR . v * «
* CORRECT * ° AL * CONTECL IS PA?SED T0
* ALIGNMENT CF * ° PHASE EY [OPTIQNAL) QR
LIKENED * . PHASE FA (NON-CPTICNAL)
* STRUCTURE : °
.
B L T .
. .

118

Table ED. Phase ED, Initialization
r —-—= T=== PG Nt 1
|{Main Processing]| |
| Statement or Operation Type | Routine | Subroutines Used |
b —— ommm e oo -
|Sets up routines in scratch core | SETUP | None |
| for phase EL | | |
I L 1 e ———— e e e e e 1
Table ED1l. Phase ED Routine/Subroutine Directory
[ro—— = T - - ittt 1
| Routine/Subroutine| Function |
VSV DRSS _— e e e e e i o e e e e e e e i 4
| EVENT | |
| TASK {]
| CELL jRoutines for processing declared attributes. These set up |
| BASED |information in the attribute collection area of scratch core,
| POINTER | for reference by CDICENW, etc., in phase EL. |
jOFFSET | |
R e e e e e e e e e e e e]
Table EG. Phase EG Dictionary Initialization
r - =T mT - -
| |[Main Processing]| |
| Statement or Operation Type | Routine | Subroutines Used
________ _— 1 SR —
T
|Hashes labels | CAAL | CHASH, CBCDL2 |
———— — ————1 + _ — -4
| PROCEDURE-BEGIN cha in |ca? | None |
e o e {
| BEGIN jcasa | None |
F A T } -- i
| PROCEDURE | CAPROC | CANATP, CFORP |
____________________________ -+ $-- —————— ——]
| ENTRY {CcAL0 | CANATP, CFORP |
—— — N L e e e o o oo o . e S e D S B . T o S e e S e 0 S B {
T T
|Formal parameters |CFORP |CHASH, CBCDL2 |
L J
——— - haaah i T - 1
|Attribute list | CANATP |{CAPRE1, CATCHA, CATBIT, CATPIC |
___________________________ — + ___...-..___—__—_'-__.._.'
|Creates entry type 2 entries for |CTYPBL | ENT2F, CDEFAT i
|labels | | |
| P —— B I L o [-
Section 3: Charts and Routine Directories 129

° Table EG1.

|Rout1ne/Subrout1ne|

CAA

OPTN1 (EF)
CPTN2 (EF)

I
|
[
|
I
|
!
|
I
|
|
|
|
I
|
I
|
I
I
!
| CBCDL2
|
|
|
|
|
|
Ic
I
|
I
|
|
|
|
|
I
|
|
|CPTN3 (EF)
!
|

ATTRBT (EF)

R, L - ————

130

| Processes

| Processes

| Processes

| Processes

| Processes

| Processes

| Scans the

|Processes

|Processes

| Traver ses
Jthat just

|Completes
|

|Processes

Phase EG Routine/Subroutine Directory

Function

|Scans label table and hashes labels.

attribute list.

PROCEDURE statements.

precision data.

BIT attribute.

CHARACTER attribute.

PICTURE attribute.

PROCEDURE-BEGIN chain for the relevant statements.
BEGIN statements.

ENTRY statements.

the hash chain looking for entries with the same BCD as
found.

data byte for entry type 2 entries by default rules.

formal parameter lists.

|Obtains an address in the hash table for an identifier.

|
|

|Creates entry type 2 entries for labels.

|Creates or copies second file statements.

| Scans ENTRY chain.

|Checks containing block options, for inheritance.

| Processes

|Performs post processing, makes

| Processes

procedure options.
STATIC DSA decisions.

POINTER, OFFSFT, and AREA attributes.

e et T T e S e S e .ttt i ! s i it . G, S e, W . e W e S et S e S et ittt . i . et e s s o}

®» Table ELl.

Phase EL Routine/Subroutine Directory

[Routine;SubroutineT Function
[aTisoy [Scans the List of attributes following the identifier.
| |

| BCDISB JChecks for multiple declarations, etc.
| '.

| BCDPR | Processes BCD of identifier.

| |

[I

|CDATPR (EK) |Attribute controlling routine.

| I

=CDATHO (EK) =Processes DECIMAL attribute.

}CDATul (EK) :Processes BINARY attribute.

‘CDATQZ (EK) =Processes FLOAT attribute.

‘CDATu3 (EK) !Processes FIXED attribute.

{CDATuu (EK) %Processes REAL attribute.

‘CDATHS (EK) }Processes COMPLEX attribute.

=CDATu6 (EK) :Processes precision attributes.
:CDATMB (EX) }Processes VARYING attribute.

=CDATu9 (EK) =Processes PICTURE attribute.

;CDATHA (EK) :Processes BIT attribute.

;CDATUB (EK) lProcesses CHARACTER attribute.

{CDATuc (EK) =Processes FIXED DIMENSIONS attribute.
lCDATMD (EK) :Processes LABEL attribute.

!CDATQF (EK) =Processes ADJUSTABLE DIMENSIONS attribute.
=CDAT56 (EK) ‘Processes USES attribute.

1CDAT57 (EK) ‘Processes SETS attribute.

‘CDATSS (EK) }Processes ENTRY attribute.

:CDAT59 (EK) :Processes GENERIC attribute.

=CDAT5A (EK) =Processes BUILT-IN attribute.

IICDAT60 (EK) {Proc esses EXTERNAL attribute.

{CDAT61 (EK) IPrqcesses INTERNAL attribute.

:CDAT62 (EK) {Processes AUTOMATIC attribute.

ECDAT63 (EK) }Processes STATIC attribute.

ﬂCDAT6u (ERK) }Processes CONTROLLED attribute.
ICDAT69 (EK) =Processes INITIAL attribute.

ECDATGA (EK) iProcesses LIKE attribute.

e c—

e o o e e e e . e e oo e e e e e e

Section 3: Charts and Routine

Directories 135

o Table ELl.

Phase EL Routine/Subroutine Directory (cont'd)

fmm—m————
|

T

Routine/Subroutinef Function

F
|CDAT6B (EK)
|
| CDAT6C (EK)
|
| CDAT6D (EK)

|
[CDAT70 (EK)

=CDAT88 (EK)
{CDCLSC
=CDFATT (EM)
ECDFLT (EM)
:CDICEN (EM)
=CGENSC (EM)
:CHASH (EM)
:DCIDl
}DCIDPR
:ECHSKP (EK)
}IMPATT (EM)

|
| INTLZE

+____ - — —— ——

s e

| Processes DEFINED ATTRIBUTE.

|
|Processes ALIGNED attributes.

I
| Processes UNALIGNED attribute.

|Processes AREA attribute.

| Processes POS attribute.

|
|Scans each item of DECLARE statement.

|

|Applies factored attributes.
| :

|Applies default attributes.

|Constructs dictionary entry.

|performs phase initialization and scans chain of DECLARE statements.

|
| Hashes BCD of identifier.

|Main scan routine.

|Processes factor brackets and level numbers.

|

|Initializes and passes control to Module EM.

|
|Applies implicit attributes.
|

|[Performs initialization for each identifier declared.
%POSTPR %Post—processor.
ISCANu (EM) }Scans chain of DECLARE statements.
ESELMSK }Selects-correct test mask to be initialized.
=STRPR =Processes inheriting of dimensioné in structures.
iTEMSCN 1Scans ahead for next level number.

136

e s e S s S ——_———— —— — — —— — gt S —— i, o — i . G S, SO S S St S — — —— —— i, c—

Table EW. Phase EW Dictionary LIKE

{- TMain ProcessingT 1
l Statement or Operatign Type { Routine l Subroutinff-Used -J
[Scans LIKE chain TEW‘BEGN IEWCOPY, EWELDM, EWINCH, EWONDM |
{Upd;tes hash chain for new entry EEQQEEN ENone o T 1
fCalculates start of structure data TEWVART TNone - B T -1
Efrom start of variable information |_—— l ------ }
{Changes error entry to base elementlEWCHEN ?None]
[copies dinension table entry and | |EW2ENT | Sx R 1
|second file statement | | |
[. R 1 L e e e e e e o ———— J
e Table EWl. Phase EW Routines/Subroutine Directory
ﬂggazine/Subroutine|-_--—- Function T]
IREIEQ-IEQ; -------- |§§S§I&Z£ correct alignment of base elements i;-likenga-;;;;;;;;;?---1
EBASED (EV) | Inserts or deletes defined slot, where only one structure is based. ‘
gCESCN ESCans dictionary to find entry corresponding to BCD in text. :
aEWBEGN :Scans LIKE chain. ‘
%EWCHEN {Chanqes error entry to base element. :
:EWCOPY |Copies dictionary entry into scratch storage. {
#EWDCCY (EV) |Copies initial dictionary entries and associated second file state- }
| |ments, etc. I
%EWELDM =Copies entry into scratch storage with dimension data removed. |
%EWELTS ‘Tests whether the likened structure is dimensioned. :
EEWEND |Handles transfer of control to next phase. =
FEWERNC =Processes erroneously "likened" major structure. ;
| :EWHSCN |updates hash chain for new entry. =
;EWINCH =Completes entry copy and places it in dictionary. ‘
fEWNOLK %Tests whether original structure is dimensioned. :
I EEWNWBK (EV) |Obtains new dictionary block and terminates current one in use. }
EEWONDM =Copies entry into scratch storage, inserting dimensicn inforration. :
%EWORDM !Processes dimension information in original structure. %
%EWSTRI %Tests validity of likened structure. {
EEW2FNT (EV) lCopies second file statement and associated dictionary reference. J

Section 3: Charts and Routine Directories 13

9

e Table EY. Phase EY

Dictionary ALLOCATE

I - T T 1
| [{Main Processing} |
| Statement or Operation Type | Routine | Subroutines Used |
L (R 1
r T T - - ""
|Scans text for explicitly pointer- |IEMEX |EY1l |
|qualified based variables |]
(] 1

________ L T I --——-___—_----_----"
|Copies dictionary entries for |EY1l | HASH, ATPROC, DICBLD, STRCPY
|explicitly qualified based varia- | |
|bles | | |
F - —— S pommmmmm -1
|Second file pointers. Scans ALLO- |[IEMEY |ATPROC, DICBLD, HASH, STRCPY |
|CATE statements | |
F . — - oo 1
|completes copied dictionary entry |ATPROC with | MOVEST
| for an allocated item |second entry |
| |point ATPROD | |
b= — ————f——— + —mmm e
|Controls ATPROC and ATPROD routines|STRCPY | ATPROC, ATPROD |
|for each member of a structure | | |
L N L J

e Table EYl. Phase E

—— e ey e

Y Routine/Subroutine Directory

LB T
| Routines/Subroutine| Function
L

t
| ATPROC/ATPROD (EZ)

140

} - _— e
|Complete copied dictionary entry for allocated item by including
|attributes from ALLOCATE and second file statements.

|Collects attribute given for an identifier and copies its dictionary

|entry.

|
| Processes ALLOCATE statements.
|

| Processes identifier in ALLOCATE statement.

|Processes major structures.

|Hashes BCD of identifier to obtain its dictionary reference.

{Sscans text for explicitly pointer-qualified variables.
|copies dictionary entries for explicitly qualified based variables.

| scans second file, reverses pointers. Scans ALLOCATE statements.

|Copies second file statement and associated dictionary entry.

|
|controls ATPROC and ATPROD for each member of structure.
1

eChart MD.

Phase MD Overall Logic

Diagram

ok
¥MD *
% Bl
%
*
N
©X000 -ooo.n;oooooooeoooooo--neo.nouooo
. o
X . °
HROA KD] AR Ao A M M
% x . M
* 8CAN TEXT A ° o
* FOR TRIPLE X ° °
#* OF INTEREST * ° °
* " . .
N LT . .
. . H
. o o
o . o
o o o
. . o
X . ° °
o¥o LFARIN o*o LFARIL ‘o °
c1° ke c2° "%, P T T) .
o¥ IS *o o *o * MAKE ENTRY * ° °
o IT A *o, YES 1s *o YES * IN STACK * ° °
o FUNCTION -”‘e--.u.oox. IT _ADDR OR o*nouo-o.ox* MODIFY SCAN *c0049 °
*, TRIPLE o% *s STRING o%* PARAMETER X °
% o . ok o M
¥ W% E— PPN S .
* NO * NO ° .
o o bk M .
. ° * ° °
. oo XX Rl * ° °
° * ° °
X Rk R . °
0¥ LFIGN o%e ° °
Dl *o D2 e *****DB***‘#****** ° °
o* IS o%* * ° °
o ¥ IT AN *n YES o¥ IT AN *. YES * REMOVE * ° °
*o IGNORE -‘-uo...oox*o IN LI o*o'.ono.ox* TRIPLE #0009 °
*o TRIPLE- » *o FUNCT]ON o* FROM TEXT * X °
*o o *o M o M
%o o¥ *o .‘ e ool ok ek A o e R AR . °
* NO * NO ° °
o o . .
. . o
. -ox* 31 * ° °
. o .
X T . M
0¥ LFSPEC _ _o%e . N .
£1 E2° "% SRRLORE IR AR RRARR o M
o* IS 1 o¥ *o * MAKE ENTRY * ° °
o A SPEC Is IT *o IN STACK ° °
*o ASSIGNM ono-l*e AN IN-LINE coooooX¥ TO PRODUCE A *c000 °
e TRIPLE *oFUNCT!ON*a* by Uy TRIPLE X °
o ° N
C g ok ¥o o St RO R o .
*°NO *"NN ° °
N o Wk M .
. * ° °
. coX* Bl * ° °
. o o
%] . M
o¥o LFCCM o %o LFDR ° °
F1° "%, F2 o ARETc hp i st M
ok IS Weo o¥ *o * ERT °
‘[’T AN % YES o¥ Is IT *o YES * DESCRIPT]DN ‘ . .
%o ARGUMENT .*oomo.e.ox*o ﬁh IN-LINE o*ococcoao%¥ CF_ARGUMENT *oc00 °
o TRIPLE _o¥* FUNCTION o* * INTO STACK * °
Lo ¥ ° o ¥ * . * °
*e ok #o o SR O .
*°NO *°NO .
N P T T M
o . E °
2 oo X* Bl * °
. .
X ok kk °
o¥e o %o SNAKE LEMCY °
61" ¥ 62" "%, ERRBAGIERRRRARIEE SYE. HGaTaTEEATIRE
o* IS *o * *o * * VE CODE * °
o ¥ IT AN YES d I * x PRODUCE * TU QUTPUT * °
"‘END"UF—FUNCTXON*oo.oeooeX‘n END OF ADDR o cooooX¥ APPR”P?[ATE *eu.....xt RESET SCARN *s000
*.*TKIPL ‘. .EUNCTXCN‘o* « IN-LINE CODRE : * PARAMETER *
o A
.‘. .* #o o k2 o o e ek o ok Skkok e ok ookt o ook dalolonok
*°NO +°ND
. °
M o
X °
ook ok M
*ME % X °
* Blx o*o RGPE °
* H2° "% FEARH RO R AE .
* o# IS * °
ot 1T FN? *# ES * PRODUCE .
o OF STRING .#.n.u..x* APPROPRIATE *c0av000000000000000
.E‘UP\CTICN o¥ CODE *
o
.*o o¥ ok o ok ok ok ook ok stk okealok
* NC
o
.
X
b
* *
* Bl
M
ok ke

Section 3:

Charts and Routine Directories

209

‘Chart ME. Phase ME Overall Logic Diagram

Ei L il] EE L b
*ME * *
* Bl
* &
*
o
M
.
X SIGN
Aok R] ko kok ok Aok o ol B 4 ke ol o ok ko R
*INITIALIZATION * * - o*
IOBTAIN SCRATCH % : ksem Txo. JENORE"
coessoce o
¥ STORAG o M 1 *
CFLAG= * * *
tttlt#t#ﬂt*t‘t*t* FRAR AR R R A DR A R
N M
"" . .
* 4 .
IR A
. .
L) " °
% M sDCgM
Fhdokk(] KRR bkhkkE . ﬁl*"cs"*‘#ﬂ**#i
* PHASE L * .
B e B B 2 e e o e ° * PLACE SECOND '
CAN FCR_ * M coosoxt | PE *
1 WIeLEOF % * INTC STACK *
INTEREST * * *
l"i#*'lt.tl*'#‘* ook o ool oo ol ok ok ook
N .
- .
. .
. H
M M
X X
oo SFUNC o %o
131 *q *. otk) 3 o kR ol ok ok a1] *g
o* IS %e R * UPDATE STACK. * oF IS 4o
o* 1T A - ke 'YES oIN prEs, ves 3 RESET cPLAGY” 3 NO o%° 1T A N
*e FUNCTION e*ceesesceXke GN cosssoX* SET ARGUMENT * secosesecesosasonc®e DICTIONARY 0%
%o MARKER o% * — o * O SWITCH ON M #oREFERENCE
* o o* * » . *o o
*, o F AR o R AOK R R . g o
*“No Ne . . *°YES
N o e M M
. e * - °
. ceX# C1 % M .
M LI . .
X o etk - °
o¥e ns1 % (234 %
El *g Aok ok E 3ok ook o ok H Ak F 4 ko ohokk kR Aokok kA E 5ok okokokkokok
o* IS 3 QROSTE STACK. * * * *CONSTRUCT TDB.
o IT AN e YES * SET CELRGm3," * * CONSTRUCT * rabLACE £1RST
%2 END OF s%scecse Teescessscasacesst SET ARGUMEAT * * TDB_FRQM * *TRIPLE QP ERAND *
*e FUNCTION o % . * CSWITCH OFF * * TMEDS * * INTO FIELC 6
ATRIPLE,* . * *
%y o ¥ ° AR ok oKk ok ko k ok Fo ok Aok R ARk Aok ekt Sk b ok ok Rk ok ok kb
= NO . . M .
. . . .
. . . . M
.
. tecsescscscse M LEE tecesssesessssncseassccesie
X - . * *
* X . * CL * “se %
ﬂ#’#‘FZiiﬂ*t*ﬂ‘** . * * W ok F Gk ke dokok dokok
. ok * *
E ¥ _cowncate . X MOVE_TCB
£ * STACK POINTER t M *x 0 STACK *
v, * . * *
N * t . * *
EE IR ERL LS L LY ° LR PR 2t)
* . . -
.
.
M
.
X
*
. s *
o* E «* < *
#e OF_PRO *g €E *
*¢ TRIPL * TE %
*, . DE_»
g o¥ sk
+°YES N
.
N
.
.
M
MSG ¥
PRSI L RS L]

*
* RESET CFLAG *
* FROM STACK :

*
» *
Aok kR kK kS Rk

°

o

.

°

.

.

X

Aok ek] G Aok bkt ok
*

F CriaG=
* S T ARaUPFhT

EX LT

AR AR AR K koK
°

. °

2X0000000060000000000000008000c80008000 0000000000080

AN
*

»
01 ox

* «
R

210

Table MBl. Phase MB Routine/Subroutine Directory

[Routine/Subroutinei Function

{DRFTMP]Makes temporary descriptor froﬁ a dictionary reference. o
=GEEWKS ‘Obtains workspace to accommodate a variable of given type.
{MB0O0OO1 |Scans source text.

%MBOOOM ‘Multi_switch for triples of interest.

|MB0O010 {On reaching end-of-text marker, releases remaining block, and

| | releases control of phase.

|MB0O0O11 |PSI operator; starts new entry in stack for pseudo-variable.
|MB0012 |PSI' operator; completes stack entry and generates code for data

|1ist items.

|

MB0013 |ASSIGN; completes stack and rescan group of assignments, putting
|target descriptions out in correct sequence, generates code for
| pseudo-variable in stack.

I
|MBOO1 4 |Multiple ASSIGN; places any target descriptors in stack.

|MB0020 | Constructs pseudo-variable stack entry.

{MB1310 =Resets input pointer to start of sequence of ASSIGNS.

|MB1311 =Rescans ASSIGNS and associated TMPDS from stack in reverse order.
‘M51316 =Tests for end of stack.

{MB1318 :Tests for pseudo-varaible TMPD.

|MB1320 =Generates code for pseudo-variable.

{MMV3A5 {Moves one triple to output.

:MVTMPD |Places temporary descriptor in stack.

EOUTMPD %Places temporary descriptor in output string.

| SWITCH {Changes scanning table.

lTARGET‘ lobtains temporary workspace for pseudo-variable, if necessary.

e e e v S . . s — T — S G G G— — S . —— — —— —— — — —— ——— — ——— T — — —— — — —a— — —

Section 3: Charts and Routine Directories

243

e Table MD. Phase MD Pseudo-Code In-Line Functions

r [Rp— e e e e e e e g e e e e e o e e e e i o e [p——

T T 3
| |Main Processing]| |
| Statement or Operation Type | Routine | Subroutines Used
fmm——- e } e -—- .
| Scans text | Phase LA (SCAN) |None |

— : — —f-— t - --- ey
|Builds up function stack | LFARIN | None
L L
. R o e 1
|Builds up argument stack | LFCOM | None
. —4 1 --- -1
|Moves generated code to output | LFMOVE { MV3 (LA) |
| Elock | | |
———————— - + $- -y
| |Generates in-line code and |LFEOF2 | SNAKE, ROPE |
|library calling sequences | | |
L ——— i L - J
e Table MD1. Phase MD Routine/Subroutine Directory
- == T == 1
| LFARI1 |Continues scan for in-line functions. |
|
| LFARIN |Builds up function stack. |
| |
| LFCOM |Builds up argument stack.
I | |
| LFDR [Unpacks dictionary reference of argument when argument triple found.|
I I
| LFEOF2 |Calls subroutines to generate in-line code.]
| I
|LFIGN |Removes triple from text if inside an in-line function. |
| |
| LFSPEC |Branches if IGNORE triple or not an in-line function.]
| I |
| {roPE |Generates code for STRING function. |
I |
| SNAKE |Generates code for ADDR function.
L _— L ————— —————— ——— - -J

244

e Table MS. Phase MS Pseudo-Code Subscripts

{_ T TMain ProcessingT - i
| Statement or Operation Type [_éoutine 1 Subroutinff Used _|
{Scans text ISBSCAN INone 1
|E;Z;ulatees element offs:z:. |rSBSTIH ISBASS, SBCOBI, sgt_;ﬁc_)};, SBMVEB: _1
| | | SBNEST, SBSUBP, SBSUDV, SBXOP, |
| I} _ . |+ |% UTTEMP, SBOPT }) _}
lchecks fubscript rangf_ -~lSBSBRN lNone) !
e Table MS1. Phase MS Routine/Subroutine Directory
[Rout;;;;Subroutine‘ T Fanction]
iSBASS “__|Upda;;s scan pointer over an assignme;;? o T —1
‘SBCOBI (MT) | Converts subscript to binary integer. }
}SBERR (MT) |Puts error message into dictionary. }
‘SBGNOR (MT) =Allocates an odd symbolic register. {
}SBMVCD (MT) }Generates pseudo-code and moves it into output text klock. {
:SBNEST (MT) }Handles nested subscript situation. {
| =SBOPT ICalculates element offset in optimizable cases. 1
:SBSBRN (MT) }Checks subscript range. :
fSBSCAN =Branches to LA for scan. }
' ESBSTIH =Generates code to calculate element offset. l
}SBSUBI }Saves array name. :
}SBSUBP (MT) ‘Handles end of subscript list. }
1SBSUDV }Generates code to set up the dope vector of an array cf adjustable :
| | strings. |
}SBSOS {Generates code to multiply subscript by multiplier. %
=SBSOG ‘compiles code to convert to fixed binary. {
}SBSOOZ |Checks for occurrence of subscript. ‘
{SB8029 %Generates code to multiply subscript by 4 or 8. ‘
‘SBTRID |Scans for comma, subscript prime, or subscript triple. |
=SBXOP (MT) {Handles special index feature. i
ESCAN %Contxolling scan of text. }
iUTTEMP (MT) iAllocates workspace. J

Section 3: Charts and Routine Directories 255

Table NA.

Phase NA Pseudo-Code Branches, ON,

Returns

r——-

T T
[Main Processing]

- -

{ Statement or Operation Type | Routine | Subroutines Used

L 4 L

r === I T i ettt '{
|Initializes text block | NAINIT | SCINIT (LA) |
L KR 4

r - 1 T - s -"
| Scans text for next triple of |NASC1, NASC2, |scl, sc2, sC3 (all in LA) |
|interest to user | NASC3 |

. e —— - 1
| Processes STOP statements | STOP | NAUT1 |
t -——- + + - 1
|Processes EXIT statements |EXIT | NAUT1 |
L ——— o o — ——— o — Ki e e e e e e o e o _,1
[3 T T

| Processes IF statements |IF | NAUTD, NAUT16, NAUT21, ZSTUT1 |
L — 4 — 1 - 4
r B T 1
| Processes ON statements | ON | NAUTD, NAUT6, NAUT16, SC5 (LA)
pmmmm——- ——- + 1 -—- :
Produces Library call at end of	PROCP, BEGINP	NAUT1
each PROCEDURE or BEGIN block in		
source text		
- -—= - S + - -1
|Processes RETURN statements | RETURN | NAUT1 |
i S —— KN ——— - J
r T T 1
| Processes function RETURN state- |NA3002 | NAUTB, NAUTCA, NAUT1, NAUT12 |
jments for one data type | | |
L L 4
) m—— - T T ETsmm T 1
| Processes function RETURN state- | NA3013 | NAUTA, NAUTB, NAUTCA, NAUTD, NAUTF, |
|ments for more than one data type | | NAUT1, NAUT7, NAUT8, NAUT9, NAUTI11, |
| [| NAUT12 |
p-——- O $ e
|Processes GO TO statements |cGoTo | NAUTD |
po——m - oot t e {
| Processes GOLN triples | GOLN | NAUTD |
p-——v o $ - 1
| Processes GOOB statements | GOOB | NAUTS5, NAUTD, NAUT16, SC5 (LA) |
p-————- -- e — 1
|Processes SIGNAL statements | SIGNAL | NAUTD, NAUT6, NAUT16, NAUTS, |
{ | | NAUT10, NAUT21 |
b-—- —— — - } - 1
| Processes REVERT statements | REVERT | NAUTD, SC5 (LA) |
Lo - L L —_— —— _— -4

256

eChart QJ.
Lidid
*QJ *
* Al%
L
*
.
:
s
GS1 X
ko A] ookl ook o
s .
* *
o X¥ SCAN TEXT *Xoaa
* * .
3 * * °
- Rk ot ROk Rk ok .
. o A
. ° : Al
. :
. . *
- . i3
.
.
.
.
.
. :
. :
. :
. :
. .
. .
4 :
. :
. .
o X
- o¥e
. Ccl *y
° ¥ %o
. ok END CF %4 YES
. *o TEXT o¥socac
.« e o
. L *..'
. .0
° * ND
: .
: .
. :
. :
: i
. o
. D1 *5
e *.* *.* es
e .
- to ALLOCATE o¥s0000
. %o
° *o T
. ¥ o X
« * MO
. .
.
4 :
. 4
.
o o*eo
. El %,
. . .
o NO o¥% BUYS COR ¢
.-..*.‘ BUY ‘.*

BUY
o YFS
*q oHoeoee
*
°
.
°
o
o
BV13‘ BYl4 X
Sk]
*
* EXTR
* MAPP
* can
ok gk ok
°
°
°
X
A
* ®
® F2 %
* &
PRy

Phase QJ Overall Logic Diagram

3]
a3" g
. o¥ * T
ho VES ot" ALL Ho VES .
tHoeoecece¥®o STAF SHeooeXh G4 *
Lo® %o o * *
%o ¥ PEEES TS
P * *
* = np * B4
- I o * -
% # M T
% o Xk EZ % N o
* * M N
ok X e
o*e PNDEXP X .
PA AL PAEEEL LEL L] e3 LY ool AR 4o o ke ok
- Epv x o o » EXTRACT *
P e e iR
| sososcaoto e¥ossscnae
: DCPE VECTOP = ﬁu‘ ’.* * S%ATFVFNTS :
.
e A A Ak kR Ao Ao ok *o .‘. ELEES EE LR LR LA Bt]
o ® N
T .
° * L3
coX® B4 % .
* .
Ty o
X
Rkt C 4k Rt ANk
* EXTRACT * *oheox
L Sy
0o & CANE can fgo0o Xk F5 %
X * 2ND FILE * *
ok ook * * LS
*Qu & koo ok ROk ko B Dok ok
2 AL®
%
ALLO
LG sksn 24 ap 04° “#e
*OUSCAN SEEAC o . L]
e TSRt EtéE H X%y * X% 2{2'}9 oD vk a2 %
oo ovaccsooX¥s e*060a0a00X¥e e%¥0000
x Beutiks * » N 5 o *
» * *o o *ookn oeRR
AR ARARARAX AN *o ok * s
2°YF§ * E5 *
o * *
° Bk
o .
° oXcooooo00000
X ®° °
LlBCi o¥e LIeCl X °
Hohokn ca® x, ERRAAESRABAR SRS
* o *o * DETERMINE % o
* o¥ AO&UST *o NO * SIZEy AND * °
* %0 LEMGTH 2 J#occsocsoX* GENERATE *
* *o 0¥ * EALEINE *
dwH * * * SEQUENC [
ok e e sl ook e e et ok ok AR ROk ok °
* F2 % . :
ok . .
e . .
. * F3 %, . :
N ° o
M wkk M .
BY15 X X °
ok D kol Atk okoh AR ARKE 5o B ok kokk °
L1 01644 * o 3 GERERATE *
xs "CATNENGTE 3 " "l 5 I ORPLRCATRORT
coe b o o M
* SECUENCE * ° *e H * CODE *
* ok .) * *
AAXB YRR * x * e ok oo ok oK ROk Kook ok -
o *"YES Ak #"YES o o o
. . » * AkEE . T .
° ° » A} % . ° . * .
° ° ‘**‘** : G4 *oXe ° ..x: F2 : °
o o .
N M » o . frak M
H X PREVAL X N
* ARRHAG IR * G5HHABARh A
R * * # * EXTRACT *
v % FXTRACT 2NC = * CGPY » NC_FILE *
A * E * coo¥ aLd # TATEMENT *
0 * STATEMENT * o * DCPE VECTOR * * FOR * °
* * o ¥ * * LENGTH * .
» F AR A % Atonsmrawsnmpsnnnn PRI 33 2
° ° bl d . °
° ° * * ° o
gXooorceearoscsccocecccnces : ES : #080000000000
* Aeokokok
)
]

Section 3:

Charts and Routine Directories

287

e Chart QU.

o
*Qy *
® Al*
%
*
°
- ©0990000000000000080000000¢
° o NC X
X o¥o o%o oo
* A4 *q € *q
o* *o *o
A YES o¥ BALR *o
(4 *9600c000 X¥o INSTPN X coo¥o 8 INST IN o*
T . 22 %enlT CALLING*
o o ° o SEQ o%-
##ti*t*#*t#*i** o oF ¥ %y o %
ket %" veg Atk *°NO
e * ® ° * * o
* * * A2 % M H TG % .
* D2 *Xeo # * M * * M
* * g ELE] M e .
skak g X X
LARGY ° LARGO o ¥a. THL o*o o %o
AR LR RA AR A2 T, 94 % 85" kg
* o *. 15 *o o% CTHER %o
* €S ox° IS IT ves o7 1T LOAD NI o* INSTRUCNS *
* SET ARGSW ‘X-o'u-ooo*. AN APGU”ENT -*Xecou- *Yoooa-oeuﬁ FRG“ ADDRFiS a* coo¥e RECUXRIN% o¥
* * *oREGISTER o* QR _DOPE ° #q ALIGNMENT o %
* #* B A ° sy VECTCR, «° o *, ¥
Aok ek ok ookl ok el %o o* o o ¥ X ¥y o¥
= NC * 2 ND ok *VES
R . N o * * °
* * ° ° . * C) * o
* Cl1 *ooe ° ° ° * e
o ©6000c0s0000a0000c0000000 Yo ° Fok kK °
xwx X o X o
o¥o X TLLIBY o¥e X
Cl° “#e Fokt ko kR R 04 kg ARG G b A AR R R Ek
o % *e * * ok TS *o * *
NO o%* - END *o * _ o* IT WITHIK *o NO = TURN OFF *
*, DF PPAGRAM o * SFT DEDSW *o000 %s A CALLING o%*eoeo * ARGSW _AND *Kooo
*e o * ° *o SEQURNCE o% ° * CEDSW *
. ok HHAE * * o #*, o* M *
o ok * » R R ROR A . Hy g% X sk dokok ook ARk Rk
* YES§ % D2 * ° #* YES Kk °
* Faorn * » M ° * * PO
* * TS M ° ® N2 oK o X *
* oo X¥ J5 ¥ ° ° ° * * oo X#® N3 *
©¥00000000000000000600000060090000200600 ° AR *
doR R X i HAoR
ALREGQ o¥o ALIGNC o %o s TTS o¥e o ¥o
D1’ "%, 2 . BARLEDTHBRA R RIS D4 *g 05 %,
oX IS % IS % ° * SET o¥ e ok *o .
ND o*IT REG[STE&* MO o OPERAND °#, ° ALIGANENT * o% _GET/PUT %, WO IS IT *, NO
oo *W1TH MISALKGNEO*XQo.aeneG*- DIE;;ENAPV o¥ ° *RFQD ACCMEDNING *Xa.p #e EOIT INITo o*un«u.aen“*- L 15y ENTRY o¥*ceo
o %, ADDRESS o¥ *o P QENCEq %" ° =T IMSTRUCTION TINE CALL X *o o
. *o Co *q . * M ®o SEQ o% a *o o
X *o ok By ot . BRI BRI E %, o % o o o
Sk * YES * YES ° o Lol * YES ° YES
* * . o . o * * N . BRER o
* A2 x ° ° ©000000000000a0 * 03 * ° ° *
* * ° ° * ° ° ® F§ k,X,
kK ° ° > koK ° o & * °
X X " ° Hook Aok °
o¥e ALGREF o %o X o TLM X
El- ke - E2. #, ARKHAT LRBBRAAE . ARk R E B AR R AR
*q a% 1S oAk * % M S [*
NO o % DEDSW *o YES o* IT A *o * * SET * ° * STACK *
coco®¥e DR ARGSW o*Xoosvooooo¥e MISALIGNEL o*aoeoX®* A2 * * GET/PUT *o0nc00 * OUTPUTT ING *
o SET . o¥ *o VARTABLE o* X * x* * SWITCH * * MYCYS STCRED =*
*o o % 4 o% o REEK * = *
Ho ok #o o o o kR R 2R A oK Aot deoof o R ootk
* YES * ° °
° ° °
° 600060000800 0000000000000080000000050000000000000800000000060000000
°
.
%
o ook B] Aok ol ok ok
* SET *
o *® ALIGNMENT *
° * REQUIRFD FROM *
° :DED OF VARIAELE:
o
. o ook oo 3O
° °
P °
cocccocecosX
%
AQFS 10 e¥o ADENQ o %o o %o MTSO o¥o MTMVC
17 "%, *q [EMREN G4 e R NG 5 kR K
o % *o o¥ o* o* 1S *o * aYTeUT
o¥ *, NO o¥ ° OPERAND %o YES * MOCIFIED *
*o AleNWFNT o*c0000000X¥e DFDSH *¥co0n00000X¥e ARGSH *oo0c00c0X¥s A TARGET e¥cooocoooX® INSTRUCTICN *
%o (eKoe o¥ * %o FIELC o* * FOLLOWED *
*a -‘ *a o *o o ¥ *q o * RY MVC *
%o o¥ - Hy ok e oF B D
* VES * YES * YES * NO °
° ° o ° .
P o o ° °
° ° ° X
Ak . . ° LTS
* * . ° o * *
* A2 *® REGENT X WSTACK X S X * A2
* * FotRARH 28 koK AR AR R H 3 3R Ak oK tx*ﬂaﬂhil$3ﬁnatti * *
R dK A NQTE PEGISTER * * PUT MVC * auTPUT R
* LDADEn 8Y THE * # INSTPUCTION = * MVC FOLLCHFD *
MSTRN NC * FOR_IT INTO * * OCIFIE *
*"DFPLR“ xL GNMT# * STACK * * [NSTﬁUCTlON *
* RECUIR * * * * LEEE
*t$$n$l##$x'tt*tt SRR AR R R B AR AR A R O
° ° ° X J5 *
° ° ° * *
;xue.en....c-'ulov‘.'oooouuXovooc.donlllocosoollel'!l fdaiabd
P
ARk -
o
* A2 R TEOP °
* * X
EET Ao J Bt SRR IOR

288

Phase QU Overall Logic Diagram

el =lNl$H ﬂbTPUT *
* RELE TEXT

xn=L=a<= CCkTPﬂL*
AR AR HARR AR RR

0660000000000 00

eChart QX.

e feoke

ok

*ﬁ***cl*t*t**l**t
*

*GET NEX'I ENTRY *
CHAIN 1‘...-

'**#bvl*!*t**‘***

et ecsenasscoacnesasness0as00s000a0eee0a0s000s00a0aaesatecaase0ean s

X-o..oceocoono.ec*& M

*
*
#*
soveosossnasosnaot
*
*:

Phase QX Overall Logic Diagram

Ao
00X *
* A%
& W
%
o
P
e
SCANC X
FRARR AR ARERRA KA
* SCAN STATIC *
% AUTOMATIC AND *
* CCNTRCLLEC *
* CHAINS IN *
* DICTIONARY *
AR HE AR DA ARIAE
o
o
o
o
o ©060000209000
° o o
X X
HAR KR A Ak AR . padik: UL L FREEBERA R RS ERE
* M *
* GEY HEAC CF * ° * TSRN ON GET HEAC CF *
* STATIC CHAIN * ° * OBOL *ooau:.o.X*PﬂOCEPUPE CHAIN*
* 3 . ¥ SKITCH
ARARARATREAEA RS AR . BRSO P
° X
EL LT . o .
* ° ° ° °
* €2 *oXo ° o X
M *°7 . . HRAR
k. X o YES e YES * *
o*o o*o o¥e * E4 %
C2 *o Cc3 *e Ca *o * *
o 'R ok *, oF #o Axrn
o ¥ END #*e YES ° WAS 1T *o NO WAS 17 *o
oo X% OF CHAIN o*s30000000 X¥o STATEC o*occooa.ox*o CUNTRCLLED 0¥
*o o¥ #o CHAIN o% *o HAIN o*
*o ° . *o o
1o ot Ho ok *o ok
* KO * * NG
° o
. °
° o
. °
X °
oo %o L%
LER NE.S HEAAKD 4R KK ARFAK
o* ox”1s 1T *AUTCMATIC CHAIN®
Is YES «ENIR v, FoR %0 NO « FINISHEDo GET *
. CDBOL swncu .*........x*i COBOL WAJOR-C%a0eo * NEXT ENTRY IN #
oN *o smucw #PRGCEDURE CHATN
N * . * * ARE
%o ok o H TRARAAKR KRR K
»"NO *° YES Hohokk N * 02 %
° ° * * °
. . ® C1 * o ko
° ° * * ° X
0X0000000000000000000000000 b s °
X X °
o*o o¥a
E2° %, LI Mwa*eswt*uta***
o* IS 1T %, **‘* o¥ *o * GET HEAD OF
NC o *ENTRY_FOR A%, * o¥ EN% aF *o NO AUTOMATI *
AJ=STR: OR o%* * E4 *u.oox*. PROCEDUR e*eseooc.ax* CHAIN *
-STRUCTURED *o CH IN .* PRCCEDURE *
.ARMV. e o x
*o oF “¥o ot AR RO R
* YES * YES
o .
° o
o °
o °
° X
ANAGG X o %o
FARAKEL RN ARSI SRR R4 e HERERESRRLRE R SRS
* * o *
* ANALYSE DICT: * NO GEY _HEAN OF *
% ENTRY FCR_AN * * CUBUL SH]TCP o*oeoonoe.X* CCNTRE%LED *
* AGGREGATE * *
* . * %o o J *
P T L e ST ER SRR IR RO R AR
. * YES °
o o o
o o o
° ° X
o . AR
o o * *
MAKEN X PRNTAB X * C2 %
FRAARG2ARIBERA A AR SRR AK G 4y A AR A 2k * *
M * PRINT wknn
*MAKE ENTRY FOR * # AGGREGATE *
* AGGREGATE IN » LENGTH
: TEXT BLOCK : * TABLE *
B AR AR RIS RAK o ARk
o o
o M
° o
X
. ARAKR
e *RA ¥
X * Al*
AR A RRAERA A * %
CHAIN THE * *
ERNTRY INTC *
SECLAREL 6 3
AGSR %DENT‘FIEP*
FARAADER R AR RA AR

Section 3:

charts and Routine Directories

289

Table PA. Phase PA DSAs in STATIC Storage

r T T 1
| |Main Processing| |
| Statement or Operation Type | Routine | Subroutines. Used |
p-— ¥ 4 -- -
|Scans Entry Type 1 chain for blocks|PADSA | DSASIZ,DVSIZE |
lellglble for STATIC DSAs | | |
(] 4
== T - T mEEsTsTsTe eSS "
|Nakes a dictionary entry for each |DICENT | None
| STATIC DSA | | |
1
---------- T o
| Sorts STATIC chain (called from PD)|SCSORT | None |
p=—- - e Rt :
|Scans STATIC chain for INTERNAL |ARRSCN | None 1
|arrays; calculates number of ele- | | |
|rents for those arrays needing] | |
|initialization. Allocates storage | |]
|for arrays and, if necessary, for | | l
|secondary dope vectors | | |
B, 1 1 —-— S
Takle PAl. Phase PA Routines/Subroutine Directory
___________ - — - ————— 1
|Rout1ne/8ubrout1ne| Function |
—————— e e e o e e e 9
ARRSCN	Scans STATIC chain for INTERNAL arrays; allocates storage for arrays
	and secondary dope vectors (called from PH).
CICENT	Makes a dictionary entry for each STATIC DSA.
DSASIZ	{Calculates size of DSA -excluding Register Allocator Workspace. [
DVSIZE	Scans AUTOMATIC chain for variables requiring dope vectors, and
	calculates size of dope vectors.
PADSA	Determines eligibility of a block for a STATIC DSA.
SCSORT	sorts STATIC chain (called from PD). {
d

1

| I,

290

e Table QU. Phase QU Alignment Processor

r I - T—== T 1
| |Main Processing]| |
| Statement or Operation Type | Rov’ ine | Subroutines Used |
—— — —1 — —mm e
)
Tests pseudo-code instructions for [ALIGNQ	ALREGQ, MVCMAK, REGENT	
misaligned operands and deduces the		
correct alignment		
b - e ¥ } - e		
Generates a move character (MVC)	MVCMAK	ABEOT ,NEXREG, OUTEST , PSMOVE, REMOVE,
instructicn for a misaligned oper-		SNEXT, TRANS
land | | |
- ¥ pmmmm e 4
|Skips a pseudo-code item |T3 | TNEXT |
[N L
b o o oo oo e -4
| Processes the load address (LA) | TLA | TRR |
| pseudo-code instruction | | |
p=——- T + e e .
| Processes the library calling | TLTB | ABEOT, T3 |
| sequence in the pseudo-code | | |
. ——- S Pt ¢ B et 1
| Processes the L pseudo-code | TLL | ALIGNQ, ALREGQ,0OUTEST , PSMOVE, REMOVE, |
| instruction | | SNEXT, TRANS, TRR |
L ————— —— — e e o e o o e o 2 e o S e o e e i ,'
v T T
|Processes pseudo-code instructions, | THT | ALIGNQ, TRRS |
lother than L and LA, that may have | | |
|misaligned operands | | |
I ——————— ———— o —— [N e e e e e e e o ————— o o o 2 o o 2 o ,‘
[} T T
|Examines a pseudo-code item and | TRANS |T3,TABS, TDROP,TEOP, THT,TLA, TLIB,]
| passes control to the appropriate | | TLL, TRR, TSN]
|processing routine] l]
L - - ——-1 e = 1 o o e e <00t e o e . o o o ————— J

302.1

e Table QUl. Phase QU Routine/Subroutine Directory

{;gg;;;;;subroutine{ o o Function T -}
| ABEOT loutputs terminal error message. R
| ALREGQ =Tests whether or not the register is in the register table.]
}NEXREG :Gets a symkolic register. |
‘OUTEST =Gets a new output text block if required. =
1PSMOVE =Fills current output text block and gets a new one. }
|REGENT }Makes an entry in the register table for a register that has been

| | loaded with the address of a misaligned operand. |
IREMOVE }Copies text into the output text block. }
}SNEXT {Accesses next pseudo-code item in the source text. |
| TABS =Scans absolute code and copies it onto the output text if necessary.‘
‘TDROP |Removes dropped registers from the register table. ;
ITEOB |At the end of a source text block, moves out the scanned text and r
| |gets the next source text block. |
}TEOP :At the end of the program, outputs the remaining text, and releases =
| |control. |
:TRR :Deletes an assigned register from the register table. ;
iTSN iUpdates the statement number slot in the communications region. j

302.2 Section 3: Charts and Routine Lirectories

e Table QX. Phase QX Print Aggregate Length Table

r - = =T T = etttk |
| |Main Processing]| |
| Statement or Operation Type | Routine | Subroutines Used |
— - $--- e .
| Scan storage chains in dictionary |SCANC | ANAGG, PRNTAB |
|for aggregate entries | | |
" —— —f-—- o e :
|Analyze aggregate dictionary | ANAGG | ANCOB, EXTENT, FINALA ,FIRSTA, FORMAL, |
lentries and print table entry | | GETVO,GETSB, MAKEN, PRHED, SORTEN,
| | | VOPLUS |
L ——— i i e o e . . S e s e e i D 1 ———— ———— ——— -d
e Table 0X1. Phase QX Routine/Subroutine Directory
et Hes et - -= e ittt 1
| Routine/Subroutine| Function |
fomm e fommm oo e e e 1
| ANAGG |Analyzes dictionary entries for a major structure or non-structured |
{ {array. |
! - . . o . |
| ANCOB |Finds original major structure dictionary entry for a COBOL major
| | structure. |
| |
| EXTENT |Calculates length in bytes of a data variable, label, task, event, |
| jor area. |
| |
| FINALA |Calculates address of final basic element of a major structure.
| I I
| FIRSTA [Calculates address of first basic element of a major structure. |
I I I
| FORMAL |Calculates length of a non-structured array. |
I | |
| GETVO |Gets virtual origin of a dimensioned variable. |
| | I
| GETSB | Sets pointer to BCD in a dictionary entry. |
| | I
| MAREN |Makes an entry in text block for each aggregate. |
! I I
| PRHED |Prints main heading and sub-heading of table. |
| [|
|PRNTAB |Prints Aggregate Length Table. |
| I I
| SCANC | Scans STATIC, AUTOMATIC and CONTROLLED chains in dicticnary for
| |aggregate entries. |
| I
| SORTEN |Sorts text block entry for aggregate so that the entries are chainedj
	in collating sequence order of the aggregate identifiers.
VOPLUS	Calculates address of first or last element of major structure.
b 1 S S i

303

Chart 09. Register Allocation Logical Phase Flowchart

RRRA LR R
F IRST SCAN RA
e e B B o e
* ESTABLISH *
*ADDRESSIBILITY :

P ST T
.
.
.
.
M
#tttteé
SECON. CAN RF
Pl s i
* ALLD(,ME *
* PHYSICAL *
® REGISTERS *
P TR T AT TR
.
.
Py
X
P G
*1Q *
PRt
* %
*

304 Section 3: Charts and Routine Directories

This appendix relates the logical phas-

es,

within the physical phases.

name is IEMAA.

PHYSICAL

PHASE MODULES

physical phases, and modules contained

The compiler

DESCRIPTION

Compiler Control

RA Controls running of
compiler

AB Performs detailed ini-
tialization

AC Writes records on
intermediate file
£YSUT3

AD Performs interphase
dumping as specified in
the NUMP option

AE End of read-in phase

AW Controls system genera-
tion compiler options

AG Closes SYSUT3 for out-
put, recpens for input

AH Format annotated dic-
tionary dumo

AI,AJ Format annotated text
dump

AK Closing phase of com-
piler

AL Controls extended dic-
tionary compilation

M Phase marking

A controls normal dic-
tionary compilation

BX 48-character set prep-
rocessor

J% Builds second half
rhase directory

Compile-time Processor Logical Phase

AS Resident phase for
compile~time processor

AV Initialization phase
for compile-time proc-
essor

BC

BG

BM

BW

APPENDIX A:

GUIDE TO PHASES AND MODULES

BC, BE,BF

BG, BI,BJ

BM, BN

BO, BV

Initial scan and tran-
slation phase for
compile-time processor

Final scan and replace-
ment phase for compile-
time prccessor

Error
phase

message printout

Ccontain the
messages

diagnostic

Cleanup phase for
compile-time processor

Read-In Logical Phase

CI

CL

co

[oF]

cv

CA

cC

CL,ChM
CN
co,CP
CR
CsS,CT

CvV,Ccw

Read-In phase comrmon
routines
Read-In rhase common
routines

Keyword tables
Read~In pass 1
Keyword takles
Read-In rass 2
Keyword taktles
Read-In gass 3
Keywcrd tables

Read-In rass 4

Read-In gass 5

Dictionary Logical Phase

¥D

EP

Appendix A:

ED

EF,EG

EH,EI,EJ

EK,EL,EM

EP

Guide to Phases and Modules

Initialization,
subroutine package
Declare Fass 2

for

Initialization

First tass over DECLARE
statements

Second pass over

DECLARE statements

Constructs dictionary
entries for PROCEDURE,
ENTRY and CALL state-
ments

335

EW EV,EW constructs dictionary
entries for LIKE attri-
butes

EY EX,EY,EZ Constructs dictionary
entries for ALLOCATE
and for explicitly
qualified based varia-
bles.

FA FA,FB Checks cont ext of
source text

FE FE,FF Changes BCD to dic-
tionary references

FI FI Checks validity of dic-
tionary references

FK FK Rearranges attributes

FO FO, FP constructs dictionary
entries for ON-
conditions

F¢ FC Checks validity of
PICTURE chain

FI FT,FU Dictionary
hous e-keeping

Fv FV, FW Merges second file
statements into text

| FX FX,FY,FZ Processes identifiers
for cross reference and
attribute listing

Pretranslator Logical Phase

GA GA Constructs DECLARE and
OPEN control blocks

GE GB, GC Modifies I/0 statements

GK GK Checks parameter match-
ing

GO GO Preprocessor for second
check on parameters

GP GP,GQ,GR Second <check on param-
eters

GU GU, GV Processes CHECK condi-
tion statements

HF HF, HG Processes structure
assignments

HK HK,HL Processes array assign-
ments

HP HP Processes items defined

using iSUBs

Translator Logical Phase

336

IA

IG

IL

IM

IT

IX

JD

IA, IB,IC

IG

IL

IM,IN,

IP,IQ

IX

JD

Stacks c¢perators and
operands

Processes array and
structure arguments and
built-in functions

Preprocessor for gener-
ic functions

Processes generic func-
Ic functions

Processes function tri-
ples

POINTER and AREA check-
ing

Evaluates constant
expressicns

Aggregates logical Phase

JI

JI

JK

JP

Pseudo~-Code Logical

JI,33

JI,JK,JL
JK ,JL,JM

JP

Struccure
pre-preprocessor

Structure preprocessor
Structure processor
Checks CEFINED chains

Phase

LA

LB

LD

LG

LR

Ls

LV

w

LX

MB

| MD

LA

LB,LC

1D

1LG,LH

LR

LS,LT,LU

Lv

LW

X, LY

MB,MC

Utility scanning phase

Generates triples to
initialize AUTOMATIC
and CCNIROLLED scalar
variables

Constructsgéictionary
entries for initialized
STATIC scalar variakles
and arrays

Expands LCO loops

Initialization for
Phase L&
conver ts expression

triples to pseudo-code

Provides string han-
dling facilities

Initialization for
phase LX

Converts string triples
to pseudc-code

Constructs pseudo-code
for pseudo-variables

Scans for ALDR and

ME

MG

MI

MK

ML

MM

MP

MS

NA

NG

NJ

NM

NT

NU

OB

oD

OE

0G

OM

ME

MG, MH

MI,MJ

MK

ML

MM, MN, MO

Mp

MS,MT

NA

NG

NJ, NK

NM, NN

NT

NU, NV

0B, OC

oD,OE,OF

0G, CH

OM, ON, 00

STRING functions and
generates code for each

Constructs pseudo-code
for in-line functions

Constructs pseudo-code
for in-line functions

Constructs pseudo-code
for in-line functions

Constructs pseudo-code
for in-line functions

Processes generic entry
names

Processes CALL and
function procedure
invocations

Reorders BUY and SELL
statements

Constructs pseudo-code

for subscripts

Generates pseudo-code
for branches, RETURN
triples, etc.

Generates Library call-
ing sequences for DELAY
and DISPLAY statements

Generates Library call-
ing sequences for exe-
cutable RECORD-oriented
input/output statements

Generates Library call-
ing sequences for exe-
cutable STREAM-oriented
input/output statements

Pre-processor for NU
Generates Library call-
ing sequences for
data/format lists

compiler
and pseudo-

Processes
functions
variables

Pseudo-code assignment

constructs Pseudo-code
for assignments

Generates library
calling sequences

Generates pseudo-code
for data type conver-
sions in-line

os

oP, 0Q

0s,0T,0U

Generates pseudo-code
for further in-line
conversions

Converts constants to
required internal form

Storage Allocation Logical Fhase

PA PA Puts eligible DSA's
into STATIC

PD PD First STATIC storage
allocaticn phase

PH PH Second STATIC storage
allocation phase

PL PL,PM Constructs symbol
tables and DEDs

PP PP Sorts AUTOMATIC chain

PT PT,PU,PV Allocates AUTOMATIC
storage

QF QF, 0G, QH Constructs prologues

QJ QJ,0K,QL Allocates DYNAMIC stor-
age

QU QU Aligns misaligned oper-
ands

X [0):¢ Lists lengths of aggre-
gates

Register Allocation Logical Fhase

RA RA,RB, RC Processes addressing
mechanisms

RF RF,RG,RH Allocates physical reg-

isters

Final Assembly Logical Phase

TF
TJ
TO
T

UA

UE

Ur

Appendix A: Guide to Phases and Modules

TF

TJ, TK
TO, TP, TQ
TT,TU

uA,UB,UC

up,UB,UC

UE,UB, UC

UF, UG, UH

Assembly first pass
Optimizacion
Produces ESD cards
Assembly second pass

Final
values,

assembly initial
first pass

Generates RLD and TXT
cards to set up dope
vectors for STATIC DSaAs

Final assembly initial
values, second pass

Produces listings

337

UI

UI,UG,UH

Error Editor

XA

338

XA

Ccompletes final assem-
bly listings

Determines whether
there are diagnostic
messages to be printed

XA,XB

XA,XC

XF

XG,YY

constructs the third
phase list

controls the printing
of messages

Message address blocks

Contain the diagnostic
messages

APPENDIX C: INTERNAL FORMATS OF DICTIONARY ENTRIES

This appendix describes the formats of
dictionary entries during the compilation
of a source program. The appendix is

organized in the following manner:
1. Dicticnary entry code bytes
2. Dictionary entries for ENTRY points

3. Code
entries

bytes for ENTRY dictionary

4. Dicticnary entries for LABEL,

and STRUCTURE 1items

DATA,’

5. Code bytes for DATA, LABEL, and STRUC-
TURE dictionary entries

and OFFSET 2
and STRUCTURE

6. Uses of the OFFSET 1
slots in DATA, LABEL,
dictionary entries

7. Dictionary entries for:

label constants

data constants

formal parameters

FILE entries

TASK and EVENT data
internal library functions
parameter descriptions

CN conditions

PICTURES

expression evaluation workspace
dope vector skeletons
symbol table entries
AUTOMATIC chain definitions
DED dictionary entries

FED dictionary entries
tercorary dope vectors

BCD entries

second file statements

8. Dimension tables

1. TCICTIONARY ENTRY CODE BYTES

The dictionary is used to communicate a
complete description of every element of
the source program, the compiled object
program, and the compiler diagnostic messa-
ges between phases of the compiler; the
text describes the operations to be carried
out on the elements.

Each type of element has a charac-
teristic dictionary entry, which is -iden-
tified by a code occupying the first byte
of the entry. In general, each type of

element has a different code kyte, but in
order to permit rapid identification of
dictionary entries, the ccde Lytes have
been allocated on the following basis:

First Half Bvte

Bit Bit

Position Value Meaning

0 0 entry has BCD
1 entry has no BCD
1% 0 entry is tc be chained
1 entry not to ke chained
2 0 not a merker of structure
1 member of structure
3 0 not dimensioned
1 dimensioned

*This bit only applies to Phase FT which
constructs the storage «class chains by a
sequential scan of the dicticnary; later in
the compiler, items with this kit on are
added to the storage class chains.

Second Half Byte

In the
codes have the meanings shown,
first half byte is X'C':

second half byte, the following
unless the

X'7' means 1label variable
X'C' means task identifiex
X'D' means event variable
X'E' means structure

X'F' means data variable

The second and third Lytes of every
dictionary entry contain the 1length, in
bytes, of the entry. If the entry has BCD
(i.e., the first bit of the entry is zero),
this length count does not include the BCD;
instead, the BCD, which fcllows the main
body of the entry, is preceded by a single
byte containing one less than the number of
characters of BCD.

Using this general scheme, the code
bytes allocated. for dicticnary entries
appear in the following takle. Code bytes
in the table which have nc corresponding
description are not allocated.

X'00' sStatement label constant
01 Procedure or entry label
02 GENERIC entry label
03 External entry label (entry type 4)
04 Built-in function, e.g., DATE

Appendix C: Internal Formats of Dictionary Entries 345

05 Temporary variable and controlled
allocation workspace
06 Built-in GENERIC label, e.g., SIN

Appendix C: Internal Formats of Dictionary Entries 345.1

07 Label variable 42

08 File constant 43
09 44
0A 45
0B 46
0C Task identifier 47
0D Event variable u8
OE 49
OF Data variables (not dimensioned or a 4a
structure member) 4B
4c
10 4D ON CONDITION entry
11 UE
12 uF
13
14 80 ENTRY type 1 -- from a FROCEDURE
15 statement
16 81 BEGIN statement entries -- entry
17 Dimensioned label variable type 1
18 82 ENTRY statement -- entry type 1
19 83 Entry type 5
1A 84 Entry type 3
1B ’ 85 Entry type 2
1C Dimensioned task identifier 86 Entry type 6
1D Dimensioned event variable 87 Label variable fcrmal parameter or
1E temporary
1F Dimensioned data variable 88 Constant
89 File formal parameter cr file
20 temporary
21 8A
22 8B
23 8C Task identifier formal parameter
24 8D Event variable fcrmal parameter
25 8E
26 8F Data variable formal rarameter or
27 Label variable in structure temporary
28
29 90 1Invocation count dictionary entry
2A 91
2B 92
2C Task identifier in structure 93
2D Event variable in structure 94
2E Structure item 95
2F Data variable in structure 96
97 Dimensioned variable formal parameter
30 or temporary
31 98 File attribute entry
32 99
33 9A
34 9B
35 9C Dimensioned task identifier forral
36 parameter
37 Dimensioned and structured label 9D Dimensioned event variable formal
variable parameter
38 9E
39 9F Dimensioned data variakle formal
3A parameter or dimensioned temporary
3B
3C Dimensioned task identifier in AQ
structure Al
3D Dimensioned event variable in A2
structure A3
3E Dimensioned structure item .U}
3F Dimensioned and structured data AS
variable A6
A7 Structured label variakle temporary
40 Formal parameter type 1 A8
41 A9

346

5. CODE BYTES rOR DATA, LABEL, AND STRUCTURE

DICTIONARY ENTRIES

The First Code Byte - Other 1

== - ; I k]
| Bit | o | |
| No. | Description | Set By {
F $-- - ¥ - i
2	Symbol or requires load constant if	Phase EL, FT, or
	label- constant	NO
I		
[o		
2	Defined on	Phase EL
I		
	, , _ [
3	Mentioned in CHECK list	Phase FO i
I	I	
[I		
4	Needs DVD	various)
5	Last member in structure	Phases EL or EW
I		
6	Variable dimensions	Phase EL

| | | |
| 7 | * dimensions | Phases EL and FT |
| | I [
| 8 | * string length for data item | Phases EL and FT |
{ [| I
{ | --More labels follow for a label | Phase EG |
] | constant | |
	---Major Structure - no member of	Phase EY
	the structure has a dimension or	
	length attribute which is not *	

| I ————————— e e L -
The Second Code Byte - Other 2

| Sttt Sttt === - T 1
| Bit | Description | Set by |
| No. | | |
T e e R e SR !
| 1 | Dynamically defined | Phase EL |
| ! |
| 2 | CONTROLLFD major structure with | Phase EY |
i | varying strings | |
3	NORMAL = O, ABNORMAL = 1	Phases EI and FT
4	Reservel	
I		
5	Formal Parameter	Phase EI
!] I	
6	INTERNAL = O, EXTERNAL = 1	Phase EI
I I		
7	00 = AUTOMATIC or DEFINED or simple	Phase EL

| | parameter H |
{ and | | |
| | | |
| | 01 = STATIC | Phase EL |
[| | |
| 8 | 11 = CONTROLLED | Phase EL

| I Lo pp—— P - L . d

Appendix C: Internal Formats of Dictionary Entries

355

The Third Code Byte - Other 3

Description

— e b

Set by
-

————d

Needs dope vector

Needs DED

Needs no storage for the item
itself

correspondence defined

Chameleon

Sign bit for first offset

Indication of the state of

the value in the first offset
0 = rubbish

1 = good value

As above but for second
address slot

e e ————— e e e —

-

Phases EK and EY if variable |
dimension entries, variable
string length, or in
CONTROLLED storage;

Phase NU when item appears
in an argument list

Phase NU

Phase GP

Phase FV
Phase GP

Phase PH for STATIC and
Phase PT for AUTOMATIC

Phase Pd for STATIC and
Phase PT for AUTOMATIC

e e s e e e S —_— —— — — ——— ———— — ——— {— — . S ot

The Fourth Code Byte ~ Other 4

[o e o e . St s e i e i T o e e s S e S i S e i o)

N T T -
Bit | | |
No. | Description | Set by [

== $ 1

1 | Usage (i): | Phase EL (for EW) |
| An explicit alignment | |

| declaration has been made i |

| Usage (ii): | Phase JK |

| A constant has been produced| {

| for this structure or array | |

| | |

2 | 00 = Not temporary | Phase GP, HF, HK, |
and | 01 = Temporary type 2 | IM, or LB |
3 { 10 = Temporary not sold | |
| 11 = COBOL temporary | |

| | |

| e | |

) | Member of defined structure | Phase FV |
| | |

5 | Packed = 0 Aligned = 1 | Phase EL |
| | I

6 | Major structure | Phase EL |
| | |

7 | No dope vector initialization | Phase GP |
| | |

8 | A temporary type 2 which has | Phase OB |
| been incorporated in work- | |

| space 1 or RDV required. For | |

| COBOL temporaries this bit | |

| means RDV required | |

— i 1 4

Appendix C: Internal Formats of Dictionary Entries 356.1

10
11
12

13-14

15
Notes:

1. The type
ing:

First and

Data Precision#

Scale Factor*

*These are the apparent pre-
cision and factor derived
from the BCD of the. constant
(see Note 2)

Type (see note 1)

DATA byte (2)

Data Precision (2)#*#*

Scale Factor (2)*%

**These bytes are inserted
by the phase requesting con-
version. If a picture is
required, these bytes are
used to contain a picture
table reference (see Note 3)
Dictionary reference - used
when a phase requires a con-
stant to be converted into a
specific location in storage

BCD

byte has the following mean-

second bits:

00 - normal BCD constant. The first

offset slot must be relo-
cated by the storage allo-
cation phase, to contain
the offset of the converted
constant from the start of
STATIC storage, rather than
from the start of the con-
stants pool

11 - the BCD is replaced by the inter-

10 ox 01 =~

Sixth bit:

nal form of the constant.
The first offset slot is
treated in the same way as
for the code 00

the constant is required to
be converted into a speci-
fic 1location in storage.
The second code implies the
converted constant should
be made negative before
being stored

1 indicates that the con-

stant requires a DED.

Seventh bit: 1 indicates that the
constant requires a dope vector.

Eighth bit: 1 indicates that no con-
version is required.

2. After the constants processor the
bytes 6 through 8 will contain the
offset of the constant from the start
of the pool of constants. If a doge
vector is requested then the offset of
this from the start of the constants
pool is eight 1less than that of the
converted constant.

3. sShould a DED be required, this will be
constructed by Phase FL. The two
bytes, precision(2) and scale
factor (2), will contain a dictionary
reference of a DED dictionary entry.
If the constant requires a dope vector
then Phase 0S will make a dictionary
entry for it, and the dictionary ref-
erence preceding the BCD will be the
dictionary reference of this.

Task Identifiers and EVENT_ Data

The format of the dictionary entries for
task identifiers and EVENT data is, apart
from the initial code byte, the same as
that for a label variable.

Dictionary Entries for Built-in Functicns

The format is:

Byte Number Description
1 Code byte X'04°
2-3 Length
4-5 Hash chain - later becomes

the STATIC chain

6-8 Offset - gives the position
in STATIC storage of the
load constant for Library

routine

9-10 code bytes - the first code
byte contains a value which
identifies the built-in

function and also provides
information akout it. It is
used mainly ky phases IM and
MD-MM inclusive. The second
code byte ccntains further
information akout the built-
in functicn (See "Second
code Byte.")

11-12 DECLARE statemrent number

Appendix C: Internal Formats of Dictionary Entries 363

13
14
15
16

Level
Count
BCD length-1

BCD

Second Code Byte

The second code byte contains the
following information:
Eit Number Description
1 May be passed as an argument
2 May have an array as an
argument
3 Must have an array as an
argument
4 Is a pseudo-variable
5 Indicates to which of the
two tables the offset refers
6 May have an array (ox

structure) as an argument,
but will return a scalar
result

Internal Library Functions

GENERIC functions, are
Library Functions.

Library routines, other than built-in or

known as Internal
Their dictionary entry

format is as follows:

Byte. Numberxr

364

1
2-3

10
11-12

Description
Code Byte X'C2'

Length
Hash chain
Offset

Library Code - identifies
the particular Library rou-
tine required

Not used

Code Bytes - the first code
byte contains a value used
by phase MG to pick up com-
plete information about the
Library function. The sec-
ond code byte contains

DEFINED
tionary entry with the format given below

criptions are
entry for data
structure,
for the following details:

further information about
the function

13 Level

14 Count

BCD entries

BCD entries are used when the LIKE or
attributes are used. A short dic-

used. This 1is pointed at by the dic-

tionary entry with the attribute.

Byte Number Description
1 ‘ Code Byte X'4Q"
2-3 Length
[BCD length-1
5 BCD

Dictionary Entry for Parameter Descriptions

Dictionary entries for parameter des-
identical with the normal
variable, lakel variable,

file, or entry points, except

Hash chain contains pointer to formal
parameter type 1. After Phase FT this
pointer is moved to the kytes contain-
ing level and count

No BCD is present

No block identification is present for
ENTRY or FILE

The code byte for an entry point -
referred to as entry tyre 6 - is X'86°*

ON Statements

Byte Number

Entries for ON statements are made by

Phase FO, and contain the following:

Description

1 Code Byte X'CL'
2-3 Length
4-5 AUTOMATIC chain

10

11
12

13 onwards

CN Condition

Offset

Code byte as supplied by the
Read-In Phase

Block level

Block count
n
n dictionary references of

variables or ON condition
entries

This entry is made by Phase FO:

Byte Number

Description

10
11
12

13 onwaxds

code Byte X'4D'
Length

Hash chain later wused as
AUTOMATIC chain

Offset

Code Lyte as supplied by the
read in phase

Block level
Block count
BCD length-1

BCD

CHECK_List Entry

This entry is made by Phase FO:

Byte Number

Description

5 onwards

Code Byte X'C8"
Length

n where n is the number of

dictionary references fol-
lowing
Dictionary references (2n

bytes)

Appendix C: Internal Formats of Dictionary Entries

PICTURE Entry

The format of an entry in the picture
table in the dictionary.

Byte Number

10

11

12

Description
Code Byte X'C8!

Length = L+13

Ccontains address of next
entry in picture chain

Usage (1) (Before Phase FQ)
Dictionary reference of
associated declare or format
statement, right adjusted

Usage (11)
Offset in STATIC storage

Code Byte (after Phase FQ)
(See Code Byte description)

P - the number of digit
positions in field in numer-
ic picture.

Q - the number of digit
positions after V character
in numeric vpicture. Code
X*80' represents 0, X'7F'
represents -1, and X'81°

represents +1.

W - apparent length of pac-
ture. - length of picture
following. (For a non-
numeric picture the length
is obtained in bytes 12-13.)

14 onwards Picture.

Byte 9 - Code Byte

Bit Numbex Description
1 0 string
1 numeric
2 0 correct
1 error
3 0 not sterling
1 sterling
u 0 short
1 long
5 Not used
"6 0-decimal

1 binary

365

0 fixed
1 floating

Not used

Appendix C: Internal Formats of Dictionary Entries 365.1

I Dictionary Entry for Workspace Requirement

The

workspace requirement is:

Byte Number

Description

If the code byte is C8
temporary workspace

format for a dictionary entry for

Code Byte X'C8' or X'CA'

Length = 8

Total workspace required

Offset

this

(temporary type 1).

Dictionary Entry for Parameter Lists

is

Dictionary entries for parameter
have the following format:
Byte Number Description
1 Code Byte X'C5'
2-3 Length
4-5 STATIC chain
6-8 STATIC offset
9-10 Assembled length
11 onwards Contains DCA's
Dictionary Entries for Dope Vector
Skeletons '
Byte Number Description
1 Code Byte X*'Cé6"
2-3 Length
4-5 STATIC chain
6-8 Offset in STATIC
9-10 Dictionary reference

11 onwards

DECLARE number

the

used by pseudo-code

lists

or

Bit pattern of skeleton dope

vector

This entry is constructed by Phase PD

366

Symbol Table Entry

Symbol table entries are made by

PL.

Byte Number

12-13

15-16

17-18

Phase

Description
Code Byte X'C7°’

Length
STATIC chain
Offset in STATIC of DED

Actual DED if not pictured.
If a picture 1is involved,
the 1last two bytes are the
dictionary reference of the
picture table entry

Offset in STATIC storage of
symbol table entry

Dictionary reference of next
item in the syibol table for
this block

Dictionary reference of item
requiring entry in symbol
table

Dictionary Entry for AUTOMATIC Chain

Delimiter

An entry for AUTOMATIC chain delimiter
is made by Phase PP.

Byte Number

Description
Code Byte X'cC'

Length
AUTOMATIC chain

Pointer to first second file
entry

Pointer to second second
file entry

DED Dictionary Entry

An entry for a DED is created

PL.

Byte Number

by Phase

Description

1

Code Byte X'C7!

e First level Table (80 to FF)

[T T Y e S e e S e S s e e Y S M e S e - B e S T e S e o T e e e e e o
| | [1 I | i [1 | Z e | i
| | 1ot 1014a1 SN | | o1z | 1B

O H10iIid 1l IS 1C 1g I 1 < | | | H 1 | 121
m < | m 1 _m S 11 E 180 (! | | EHLE) < |
] 1 HlmlH L& (4 | Qlwl [}
H mlLH =4 | | | 1 = Z 1 n i
1 QIO 12121 AN 1 w101 z 1
O OQlZzlz 11 iHIH. 101 x 1 (O] o1
) [) H 1A [a] m o/ 1A I > W | O
(=] [S] [] I | o | IR KoM |
| | | I > R RN H 10 | £ O & 12 1
= Sl H TH P HH Z 1B 2 1@ o v A
2] By B I By B B) B H W 10O 10 1O I H I m
T|||l|_T||||ITII_T||_T|1T||.+.|+I|T.|.||T||+II||“|||T|..:||_TWAI|T||LT.I-|.
. 2 2l 18
Q o} e =4 =
m [a]] =] m
m ala a a
b4 Z 1 Z = =

1 | |1 O 2] <]] 3] .

“II|LT|||“||+||LT|JTIlnl.l-JT..lLTIulLTIIlTIlILT'l,lIIU“lIl_TILTlI_

i > | | |

m
2
Z G B
3 I T T
0 m - w.u. w m W 3] Q
Zigll A 1A 1= H =4 5] Pa +
Nnigizlliwlo IVl I~ D 2 (@) O
pr o oo e o e e - — 'J1lLTM'IIIIIT'IITII,LT'II.-!ILT'LTIL
=
>
201 m 3]
m H & >} B
Hiegigl gl |8
[N m [} Q Bl
I = o il =l =] 1
o e = e e e e e e e e llT'LTIIaILTlLFlIOIlT..llTIl!T'LTHlTl
[a] (=] < | B
o] > M2 K] Z
IR IRET - TR S 1L
m =) M @ipm e Hl1om m_ L H | 211010
oo] a0 1M Hl | Z0 A | H WIRAIZ | R

Wlllll'lJTllTllllll.flllllllTllTllllTlifllllrMLTllLTll1T||ITIIL
| h

| " Z | [| M M

o gl B gl de R |

1L L 21
< ol m m A @ ® 10 H (=1 N

TlllLT"ITILTIILTIIITWHLT'LT' T|||LTIIIIIILTll_TIIIITIILTlllrllL_
o I3 2zl
SHRE T 41 18

m g 10 W [w

s = o] L s3] (=]

= Al o0 1w [7] Zllo |1 «

b — e b e e e e e e b e T

5] .4
[=
< | = oM] |
m . 2] | 5] HleEmag o | |
Bl (5] I HIE Z Il B R [
= Bl < I nitH B2 | H O
I o} =i > m | Z | >l oI RO« X— | B
“la.‘w.._llr‘lm rmll_tll"lml.lll_ m-lrllmllm-erlhllerlDllrmIWerlrlLrw
o Lal N a2l o n o ~ @© =) (-4 m [9) [a] 3] <

373

Appendix D: Internal Formats of Text

+ Go Oout Of Block

e Second Level Table (00 to 7F

) (preceded by second level marker byte C8)

0 1 2 3 L) 5 6 7
r T T T T T T -= T 1
0 | |FILE | | | DECIMAL | OPTIONS | EXTERNAL |AREA |
+ + + + + -+-- + 1
14 | | | | BINARY | IRREDUCIBLE|INTERNAL |POINTER |
b————-- + +-— o + + ————————
2 | |LIST | | | FLOAT |REDUCIBLE |AUTOMATIC IEVENT |
L ! ——— ————— e N et ————
k < + + + + + - —————
3 | | EDIT |EVENT1 | | FIXED | RECURSIVE | STATIC | TASK
L K 1 1 4 1 IO S NS
r T T T T T T " + - {
4 |TITLE | DATA | PRIORITY| | REAL |ABNORMAL |CONTRCLLED|CELL |
1 : L 4 1 4
== T === T T T =TT T - 1
5 |ATTRIBUTES|STRING |REPLY | | COMPLEX | NORMA | SECONDARY |BASED |
e 1 - 1 [4 . B ———————
T T T T
6 |PAGESIZE {SKI | | | PRECISION 1 | USES | |OFFSET |
e ——— pommmmmm - + + 1 4 i
7 |IDENT | LINE | | | PRECISION 2 |SETS | | -
—-= + +-—— t - —= e A 1
8 |LINESIZE | PAGE | | | VARYING | ENTRY |INITVAR 1 | |
1 1 1 1 1
- T +— T T =TT T T T {
9 | | COPY | | |PICTURE(NUM) | GENERIC |INITIAL | INITVAR 2|
I- e ¢ $ e e A
A |INTO |KEYTO | | {BIT ATTRIBUTE |BUILTIN | LIKE i [
b 1 - ¥ 4 } e 4
B |FROM | TASKOP | | |CHAR ATTRIBUTE| |DEFINED { |
e e e Bt . 4 e
C |SET | |IN | | DIMS (INTEGERS) | |ALIGNED | |
- 1 $-— oo fmm e ¥ ———]
D |KEY | | i | LABEL | |UNALIGNED | |
== ¥ $ pom et } === } 1
E |NOLOCK | KEYFROM | | ’ | | | UNALIGNED |
- 4 e - == -4 - e ——
| | FORMAT | | | DIMS |] | |PICTURE |
F |IGNORE |LIS | |BY NAME| (NON-INTEGER) |RETURNS |POS | (CHAR)
L 1 1 1 L L. . I |

1The EVENT built-in funct
and pseudo-variable are
known externally by the
equivalent name COMPLETI

374

ion

ON.

e Table 3. Communications Region. Bit Usage in ZFLAGS

- T T T -7 sTEeEssse === ettt |
| BYTE | OFFSET | BIT | BIT NAME | DESCRIPTION |
| NAME | | (HEX) | | Bits are set on, on encountering:- |
E——— fommomm it o e !
| ZFLAG1 | 2COMM+16 | 80 | ZDEFFL | DEFINED attribute |
| | | u0 | ZAWAFL | ALLOCATE statement |
| | | 20 | ZSECFL | Second File statement |
| | { 10 | 2ZDIMFL | Dimension attribute |
| | | 08 | ZCHKFL | CHECK/NOCHECK prefix |
| | | ou | ZONFL | ON, SIGNAL or REVERT statement |
| | | 02 | ZSTRFL | Structure |
| | | 01] ZDECFL | DECLARE statement |
| | [| | |
| ZFLAG2 | +17 | 80 | ZLIKFL | LIKE attribute {
| | | 40 | ZINTST | STATIC INITIAL |
| | | 20 | ZOPCFL | OPEN/CLOSE statement |
| | | 10 | ZGTPFL | GET/PUT statement |
| | | 08 | ZGOTFL | GO TO statement
| | | ou | ZTEPFL | TASK/EVENT/PRIORITY options, REPLY statement |
| | | 02 | ZPICFL | PICTURE attribute/format item
| | | 01 | ZISBFL | iSUB defining | |
| | | | { |
| | ZFLAG3 | +18 | 80 | ZCONTG | UNALIGNED(NONSTRING) attribute |
i | | 40 | ZSETFL | SETS attribute]
| | | 20 | ZOSSFL, | DELAY, DISPLAY, WAIT statement |
| | | 10 | ZARGFL | Argument list |
| | | 08 | ZINLFL | INITIAL Label
} i] 04 | ZDIOFL | DATA directed I/0 |
[| | 02 | ZRECIO | RECORD I/O i
| | | 01 | ZINTAC | AUTO/CTL initialization |
| | | | { |
| ZFLAGYH | +19| 80 | ZFREE | FREE statement |
| | | 40 | sSTM256 | More than 256 statements |
| | | 20 | FILEFL | Files present |
| |] 10 | | SPARE |
| | | 08 | ZPUTFL | PUT DATA
| | | ou | ZGETFL | GET DATA |
| | | 02 | ZPTRFL | Pointer Qualifier
| | | 01 | ZRODFL | STATIC DSA Entry |
| | | | | [
| ZFLAGS | +20 | 80 | ZFTASK | TASK/EVENT/PRIORITY option on a CALL |
| | | | | statement |
| | | 40 | ZDENFL | Set by FT
| | | 20 | ALCSLM | ALLOCATE, with second level marker
| [| 10 | | Spare | |
| | | to | | |
| | | 0r | | |
L Lo L -t L - o o o e e e e o e o e -d

Appendix F: Communications Region 413

APPENDIX G: SYSTEM GENERATION

For full details of the system genera-
tion process, see IBM System/360 eratin
System: System_Generation, Form C28-6554.

During. the system generation process, a
control section named IEMAF is assembled
(see Figure 13) containing a table consist-
ing of five fixed-point values aligned on
full-word boundaries, immediately followed
by a bit string field that is twelve bytes
in length. The five fixed-point values are
related to the compiler options LINECNT,
SIZE, SORMGIN (start), SORMGIN (end), and
CONTROL COLUMN (PAGECTL), respectively.
Bits 1 to 39, and 43 to 46 in the string
are used to specify the default status of
the options. Bits 47 to 91 in the string
are used to specify if an option keyword is
to be deleted or not. A "1" in the bit
string means "yes" and a "0" means "no".
The remaining bits in the string are spare
bits not currently in use. Figure 14 shows
the bit identification table associated
with the control section.

———————— - :
I| DC F'60" |I
{ DC F'99999" ,
|' be Er2e {
: DC F'72' |l
: e j
! b B0 0000000 00000000 pEeAT |
: DC B':O 0000000 O0OO0OO0OOOOO* SWITCHES }
‘ DC B'lo 0000000 OO0O0O0O ojo [V DELETE 1
} DC B'{O 00 00000 00000000 " SWITCHES ;
I| DC B'l|00000000 0000000O00O0* -*EEREE—_"“'—{
E DC B'io 0000000 OO 0[0 0 Q 00 * SWITCHES i
L J

Figure 13. The IEMAF Control Section

414

sT 4,84(13)

ST 2,80(13)

ST 2,8(13)

MVI 76(13),X%x'00°
ST 2,96(13)

BR 14

L 15,32(11)

BR 15

END SUBROUTINE

EPILOGUE SUBROUTINE

™ 1(13),%X°80"

BC 8,60(15)

L 2,80(13)

LTR 2,2

BC 7,60(15)

c 13,PR..IHEQSLA(12)
BC 7.,60(15)

L 13,4(13)

ST 13,PR..THEQSLA (12)
™ 0(13),x'80"

BC 1,50(15)

L 13,4(13)

B 34(15)

ST 2,8(13)

M 14,11,12(13)

BR 14

L 15,A..IHESAFA
BR 15

* END SUBROUTINE

* STATIC PROLOGUE SUBROUTINE
L 4,PR..THEQINV(12)
LTR u,u
BC 11,86 (15)
L 7, PR..IHEQLWC (12)
MVC 80 (4, 3),80(7)
LA 4,1(4)
ST 4,PR..IHEQINV(12)
ST 4,84(3)
MVI 76(3),X"00"
ST 3,8(13)
LR 13,3
L 3,PR..IHEQSLA(12)
ST 3,4(13)
ST 13,PR..IHEQSLA(12)
SR 2,2
ST 2,80(13)
ST 2,8(13)
ST 2,96(13)
BR 14

* END SUBROUTINE

Appendix H: Code for Prologues and Epilogues

421

APPENDIX I: DIAGNOSTIC MESSAGES

The messages produced by the PL/I (F)
Compiler are explained in the publication
IBM System/360 Operating System, PL/I (F)
Programmer's Guide, Form C28-6594. The
following table associates a message number
with the particular phase and module in
which the corresponding message is generat-
ed.

Message
Numbex Logical Phase Module
IEMO001I Read In CA
IEM0002I Read In CA
IEM0003I Read In CA,CP
IEMOOOUT Read In CA
IEMOOO05I Read In CA,CL
IEMOO0O06I Read. In CA
IEMO007I Read In CA
IFEM0008T Read In CA
IEM0009I Read In CA
IEMO0010I Read In CA
IEM00O11I Read In ChA
IEM0012I Read In CA
IEMO013I Read In CA
IEMQO14T Read In CA
IEMO0151 Read In CA
IEMO00161 Read In CA
IEMO00171 Read In CA
IEM0018T Read In CA
IEM0019I Read In CA
IEMO0020I Read In CA
IEMO0021I Read In CA
IEM0022T Read In CA
IEM0023T Read In CA
IEMOO24T Read In CA
IEM0025I Read In CA
IEM00261 Read In CA
IEM00271 Read In CA
IEMO0028T Read In CG
IEM00291I Read In CA
IEM00311 Read In CA,”L,CT
IEMO0032T Read In cC
IEMO0O33I Read In cC
IEMO0035I Read In CcC
IEMO0371 Read In cC
IEMO038I Read In ccC
IEMOO39TI Read In ccC
IEMOO40T Read In CcC
IEMOOU43T Read In cC
IEMOO4LT Read In cC
IEMOOU45T Read In CcC
IFMOOU6T Read In cC
IEMOO48T Read In CG

| IEMOO49I Read In CcI
IEMO050I Read In cL,CpP
IEMOO0S1I Read In CcL,CP
IEM00521 Read In CcO
IEMOO0OS53I Read In Cco
IEMOOSA4T Read In CO
IEMQO055I Read In CcP

| IEMOOS6TI Read In CT

422

IEMO0057I
IEMO0058T
IEM00591
IEM0060T
IEM0061T

| IEM0062I
IEM0063I
IEMOO6ULT
IEM0066T
IEMO0671
IEMO069T
IEMO0070T
IEMO0711
IEMO00721
IEMO074T
IEMO0075I
IEMO076I
IEMO0771
IEMO0078T
IEMO0SO0T
IEM0081I
IEMO008 21
IEM0083I
IEMOOSYT
IEMO085T
IEM0090T
IEMO09ULT
IEMO0095I
IEM0096T
IEM0097I
IEM0099T
IEMO0100T
IEMO101T
IEM0102T
IEM0103I
TEMO104T
IEM0105I
IEM01061
IEM0107I
IEM0108T
IEMO0109T
IEM0110T
IEMO1111
IEM0112I
IFM01131
IEMO114T
IEM01151
IEMO1161
IEM01181
IEM01281
IEM0129I
IEMO0130I
IEM0131T
IEMO01321
IEMO1331
IEMO134I
IEM01351
IEMO01361
IEM01381
IEM01391
IEMO141T
IEMO142T

Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read
Read

Read

Read
Read
Read
Read
Read
Read
Read
Read
Read

In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In

IEMO143T Read In cOo
IEMO144T Read In CcO
IEM01451 Read In CcO

Appendix I: Diagnostic Messages 422.1

TEMO798I
IEM0799I
IEM0800TI
IEM0801I
IEM0802I
IEM0803I
IEMO8O4I
IEMO0805I
IEM08061I
IEMO0807I
IEMO08161
IEMO08171I
IEM0818T
IEM0819T
IEM0820T
IEMO0821T
IEM08231I
IEMO08241I
IEMO0825I
TEM08261
IEM08321
IEMO0833I
IEM0834TI
IEMO0835I
IEM08361
IEM0837T
TEMOBU8T
IEMO8U9I
TEMO0850I
IEM0851I
IEM0852T
1EMO08531I
IEMO864T
TEM08 651
IEM0866T
IBM0867I
IEM0868I
IEMO0869T
IEM0870T
IEMO871I
TEM08721
IEMO08731I
IEMO874T
IEMO875I
IEMO08761I
IEMO877I
IEMO878I
IEM08791
IEMO0880I
TEM0881I
IEM0882I
IEMO08961
IEMO897I
IEM0898I
IEM0899I
IEMO0900TI
IEM0901I
IEMO0902I
IEM0903I
IEM0906I
IEM0907T
IEM1024T
IEM1025I
IEM10261
IEM1027I
IEM10281
IEM10291
IEM10401

Pretranslatorx
Pretranslator
Pretranslator
Pretranslator
Pretranslatoxr
Pretranslator
Pretranslator
Pretranslatozx
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Pretranslator
Translator

Translator

Translator

Translator

Translator

Translator

Translator

GP, GQ, GR
GP,GQ,GR
GP, GQ,GR
GP, GQ,GR
GP, GQ,GR
GP, GQ,GR
GP, GQ,GR
GP, GO, GR
GP,GQ,GR
GP, GQ,GR
GU, GV
GU, GV
GU, GV
GU, GV
GU, GV
GU, GV
GU, GV

GU

GU, GV
GU, GV
HF, HG
HF, HG
HF, HG
HF, HG
HF, HG
HF, HG
HF, HG
HF, HG
HF, HG
HF, HG
HF, HG
HF, HG
HK, HL
HK, HL
HK, HL
HK, HL
HK, HL
HK, HL
HK, HL
HK, HL
HK, HL
HK, HL
HK, HL
HK, HL
HK, HL
HK, HL
HK, HL
HK, HL

IEM1051T
IEM10561
IEM10571
IEM10581
IEM10591
1EM106 0T
IEM1061T
IEM106 21
IEM1063T
IEM1064T
IEM1065I
IEM1066I
IEM10671
IEM10681
IEM10711
IEM10721
IEM1073I
IEM10741
IEM10761
IEM10821
IEM1088T
IEM10891
IEM1090T
IEM10911
IEM1092T
IEM1104T
IEM11051
IEM11061
IEM11071
IEM11081
IEM11101
IEM11111
IEM11121
IEM11131
IEM11141
IEM1115T
1EM11201
IEM11211
IEM11221
IEM1123I
IEM11251
IEM12001
IEM15691
IEM15701
IEM15711
IEM15721
IEM15741
IEM1575I
IEM16001I
IEM1601I
IEM16021
IEM16031
IEM16041
IEM1605T
IEM16061
IEM16071
IEM1608I
IEM16091
IEM16101
IEM16111
IEM16121
IEM16131
IEM16141
IEM16151
IEM16161
IEM16171
IEM1618T
IEM1619T

Translator
Translator
Translator
Translator
Translator
Translator
Translator
Translator
Translator
Translator
Translator
Translator
Translator
Translator
Translator
Translator
Translator
Translator
Translator
Translator
Aggregates
Aggregates
Aggregates
Aggregate Preprccessor
Aggregates
Aggregates
Aggregates
Aggregates
Aggregates
Aggregates
Aggregates
Aggregates
Aggregates
Aggregates
Aggregates
Aggregates
Aggregates
Aggregates
Aggregates
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo~code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo~-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code
Pseudo-code

1G
1S, LT, LU
LS

15,LT, LU
1s,LT, LU
1S,LT, LU
1s,LT, LU
1s,LT,LU
1S,LT, LU
LS,LT,LU
1S,LT, LU

Ls,LT,LU
LW
ME
ME
MB
MB
MB

Appendix I: Diagnostic Messages 425

IEM1620I Pseudo-code MB IEM18121I Pseudo-code 0s

IEM1621I Pseudo-code MB IEM1813I Pseudo-code oS
IEM16221 Pseudo-code MB, ME IEM18141 Pseudo-code (o]
IEM16231 Pseudo-code MB IEM18151 Pseudo-code oS
IEM1624T Pseudo-code MB IEM18161I Pseudo-code . NJ
IEM16251 Pseudo-code MB IEM18171 Pseudo-code NJ
IEM16261 Pseudo-code ME ‘IEM18181 Pseudo-code NJ
IEM16271 Pseudo-code ME IEM1819I Pseudo-code NJ
IEM1628I Pseudo-code ME IEM18201I Pseudo-code NJ
IEM16291 Pseudo-code ME IEM18211 Pseudo~code NJ
IEM16301 Pseudo-code MG, MH IEM1822T Pseudo-code NJ
IEM1631I Pseudo-code MI,MJ IEM18231 Pseudo-code NJ
IEM16321I Pseudo-code MI,MJ IEM18241 Pseudo-code NM
IEM16331 Pseudo-code ME IEM18251I Pseudo-code NG
IEM16341 Pseudo-code ME IEM18261 Pseudo-code NG
IEM16351 Pseudo-code ME IEM18271 Pseudo-code NG
IEM16361I Pseudo-code ME IEM18281 Pseudo~-code NG
IEM16371 Pseudo-code ME IEM18291 Pseudo~code NG
IEM16381 Pseudo-code ME IEM18301I Pseudo-code NG
IEM16391 Pseudo-code MF IEM18321I Pseudo-code NM
IEM1640I Pseudo~-code MM, MN IEM1833X Pseudo-code NM
IEM1641T Pseudo-code MM, MN IEM1834I Pseudo~-code NM
IEM16421 Pseudo-code MM, MN IEM1835I Pseudo-code NM
IEM16431 Pseudo-code MM, MN IEM18361I Pseudo-code NM
IEM1644T Pseudo-code MM, MN IEM18371 Pseudo-code NM
IEM16451 Pseudo-code MM, MN IEM18381 Pseudo~code NM
IEM16481 Pseudo-code MM, MN IEM18391I Pseudo-code M
IEM16491 Pseudo-code MM, MN IEM1840I Pseudo-code NM
IEM1650I Pseudo-code MM, MN TEM18411 Pseudo~-code NM
IEM16511I Pseudo-code MM, MN IEM1843T Pseudo~-code NM
IEM16521 Pseudo-code MM, MN JEM1844T Pseudo-code NM
IEM16531 Pseudo-code MM, MN IEM1845T Pseudo-code NM
IEM16541I Pseudo-code MM, MN IEM18461 Pseudo~-code NM
IEM16551 Pseudo-code MN IEM1847I Pseudo-code NM
IEM16561 Pseudo-code ME IEM1848I Pseudo-code NM
IEM16571 Pseudo~-code MM IEM18491 Constant Conversions (o]
IEM1670I Pseudo-code MP IEM18501I Constant Conversions 0Ss
IEM16711I Pseudo~code MP TIEM18601I Pseudo-code NU
IEM1680I Pseudo-code MS IEM18611I Pseudo-code NU
IEM16871 Pseudo-code MS IEM18621 Pseudo-code NU
IEM16881 Pseudo-code] MsS IEM1870I Pseudo-code NU
IEM16891 Pseudo-code MS IEM18711I Pseudo-code NU
IEM16911I Pseudo-code MS IEM18721 Pseudo-code NU
IEM16921I Pseudo-code MS IEM18731I Pseudo-code NU
IEM16931 Pseudo-code MS IFEM1874I Pseudo-code NU
IEM17501 Pseudo-code MS IEM18751I Pseudo-code NV
IEM17511 Pseudo-code MS IEM2304T Storage Allocation PD
IEM17521I Pseudo~-code NA IEM2305I Storage Allocation PD
IEM17531I Pseudo-code NA IEM23521I Storage Allocaticn PD
IEM17541 Pseudo~-code NA JIEM2560I Storage Allocation QU
IEM1790I Pseudo~code oG, oM TIEM27001 Register Allocation RF,RG, RH
IEM17931 Pseudo-code OE IEM2701T Register Allocation RF,RG,RH
IEM17941 Pseudo-code OE IEM2702I Register Allocation RF,RG,RH
IEM1795I Pseudo-code OE IEM27031 Register Allocation R¥,RG, RH
IEM17961 Pseudo-code OE IEM2704I Register Allocation RF,RG, RH
IEM17971 Pseudo-code OE IEM2705I Register Allocation RF,RG, RH
IEM1800I Pseudo-code 0s IEM27061I Register Allocation RF,RG,RH
IEM18011I Pseudo~-code oS IEM27071 Register Allocation RF,RG, RH
IEM1802I Pseudo-code 0s IEM2708I Register Allocation RF,RG,RH
IEM18031 Pseudo-code oS IEM2709I Register Allocation RF,RG, RH
IEM18041 Pseudo-code 0s IEM2710I Register Allocation RF,RG, RH
IEM180SI Pseudo-code 0s IEM27111 Register Allocation RF,RG, RH
IEM18061 Pseudo-code oS IEM27121 Register Allocation RF,RG, RH
IEM1807I Pseudo-code ' 0s IEM28171 DCB Generation GA
IEM1808I Pseudo-code 0s JEM28181I DCB Generation GA
IEM18091I Pseudo~code oS TEM28191 DCB Generation GA
IEM18101 Pseudo-code 0s TEM28201 DCB Generation GA
IEM18111 Pseudo~code oS IEM2821I DCB Generation GA

426

IEM28221
IEM2823I
IEM28241
IEM28251
IEM28261
IEM28271
IEM2828I
| TEM2829T
IEM2833I
IEM28341
IEM28351
IEM28361
IEM28371
IEM28491
IEM28521
IEM28531
IEM28541
IEM28551
IEM28651
IEM28661
IEM28671
IEM28681I
IEM2881I
IEM2882I
IEM28831
IEM28841
IEM2885I
IEM28861
IEM2887I
IEM28881
IEM28971
IEM2898I
IEM28991
IEM2900I
IEM29131
IFM3088I

IEM31361-

31491
IEM31511

IEM31531I
IEM3154T
IEM31561

IEM3162I

IEM31671-

31731

IEM31761I-

31901
IEM3199I
32131
IEM3584T

IEM3840T
IEM3841T
IEM3842T
IEM38431I
IEM3844T
IEM3845T
IEM3846T
IEM38471I
IEM38481
IEM38491
IEM3850I

DCB
DCB
DCB
DCB
DCB
DCB
DCB
DCB

Generation
Generation
Generation
Generation
Generation
Generation
Generation
Generation

Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly
Final Assembly

Dictionary,
Pass 2
Dictionary,
Pass 2
Dictionary,
Pass 2
Dictionary,
Pass 2
Dictionary,
Pass 2
Dictionary,
Pass 2
Dictionary,
Pass 2
Dictionary,
Pass 2
Dictionary,
Pass 2
Dictionary,
Pass 2

48 Character
Preprocessor
Compiler Con
Compiler Con
Compiler Con
Compi.ler Con
Ccompiler Con

Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare
Declare

Declare

trol
trol
trol
trol
trol

Compiler Control

Compiler Con
Compiler Con

trol
trol

Compiler Control

Compiler Con

trol

Compiler Control

EL

EL

EL

EL

oo
[l

o
]

EEEEEREERBEE

IEM38511
IEM38521
IEM38531
IEM3855I
IEM38561
IEM38571
IEM38581
IEM38591
IEM3860T
IEM3861T
IEM38621
IEM38631
IEM3864T
IEM38651
IEM38721
IEM38731
IEM38741
IEM38751
IEM38761
IEM38771
IEM38781T
IEM3880T
IEM38871
IEM38881
IEM3889T
IEM3890T
IEM3891I
IEM38921
IEM38931
IEM38941
IEM38951
IEM38961
IEM38971
IEM38981
IEM38991
IEM39001
IEM3901TI
IEM39021
IEM3902T
IEM39031
IEM3904T
IEM39051I
IEM39061
IEM39071
IEM39081
IEM39091
IEM39101
IEM39111
IEM39121
IEMU106I
IEM4109T
IEM41121I
IEM4115TI
IEM4118T
IEM41211
IEMY124T
IEM41301
IEM41331I
IEM41341
IEM41361
IEM41391
IEM4142T
IEM4143]
IEM4148T
IEM4150T
IEMG1511
IEM4152T
IEM41531

Compiler
Compiler
compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Compiler

Control
control
Control
Control
Control
Ccontrol
Control
Control
Control
Control
Control
Control
Control
Control
Control
Control
Control
Control
Control
Control
Control
Control
control
Control
Control
Control
Control
Control
Control
Control
Ccontrol
Control
Control
Control
Control

Compiler Control
Compiler Control
Compiler Control
Compiler Control
Compiler Control
Compiler Control
Compiler Control
Compiler Control
Compiler Control
Compiler Control
Compiler Control
Compiler Control
Compiler Control
Compiler Control

Compile-time
Compile-time
Compile-time
Compile-time
compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile~-time
Compile-time
Compile-time

Prccessor
Processor
Processor
Prccessor
Processor
Prccessor
Processor
Processor
Processor
Prccessor
Processor
Processor
Processox
Processor
Processor
Processor
Processor
Processor
Processor

PEEEEEEEEEEEEEERERERERERREEREREER

Appendix I: Diagnostic Messages

427

IEMB158T
IEMU157T
IEM4160T
IEM8163T
IEM4166T
IEM4169T
IEMB172T
IEM4175I
IEMU1761
IEMU1781
IFMU184T
IEM41871
IEMU188T
IEM8190I
IEM8193T
IEM8196T
IEM4199I
IEM4202T
IEMG205I
IEMU208T
IEM4211T
IEM4212T
IEMU214T
IEmM4217T
IEMU220I
IEM42231
IEMU2261
IEM42291
IEM8232T
IEM#235T
IEM6238T
IEMU241T
IEMU204T
IEMU247T
IEMU248T
IEM4250T
IEMY4 2531
IEM4254T
IEM4256T
IEMU4259T
IEMB2621
IEM8265I
IEM42711
IEM42771
IEM4280T
IEM4 2831
IEM42861
IEMU289T
IEM4292T
IEM42951
IEM4296T
IEM#298T
IEM4299T
IEM43011
IEM4304T
IEMU307I
IEM8310I
IEM8313T
IEM4319T
IEMU322T
IEMU43251
ImM43281
IEM83311
IEM43321
IEMU334T
IEMS 3371
IEMU340T
IEM4343T

428

Compile~-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile~-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
compile-time
Compile-time
Compile-time
Compi le-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time

Compile-time.

Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time

Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processox
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor
Processor

IEM4346T
IEM4349T
IEMU3521
IEM4355I
IEM4358T
IEMU43611
IEM4364T
IEMU367I
IEM43701
IEMU4373I
IEMU376T
IEM43791
IEM4382T
IEM42831
IEM4391T
IEM4394T
IEMU3971I
IEMU400T
IEMU4003I
IEMU406T
IEMU44OTI
IEMUU09T
IEM44121
IEM4415T
IEMU421T
IEM4433T
IEMU436T
IEM4439T
IEMUULST
IEM4451T
IEMU452T
IEM4L4SYT
IEMU4STI
IEM4L60I
IEMUL63T
IEM4L469T
IEMUU4T 2T
IEMU473T
IEM4475T
IEMU478I
IEM4481T
IEM4USLT
IEMULOIT
IEM45021
TEM4SOUT
IEMU4505I
IEM45061
IEM4508T
IEM45111
IEMUS1UT
IEMU517T
IEM45201
IEMUS5231
IEMU#526I
IEM45291
IEM45321
IEM45351
IEM4538T
IEM4547T
IEM4550T
IEM#5531
IEMYS559T
IEMU45621
IEM45701
IEM4572I
IEMU4ST4I
IEM45761

Compile-time
Compile-time
Ccompile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
compile-time
compile-time
Compile-time
Compile-time
Compile-time
conmpile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-tinme
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile~-time
Compile-time
Compiloe-time
Compile-time
compile-time

Compile~-time

Compile-time
Compile-time
Compile-time
Compile-time
compile-time
Compile-time
Compile-time
Compile-time
Compile~-time
compile-time
Compile-time
Compile-time
Compile-time
compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time
compile-time
Compile-time
Compile-time
Compile-time
Compile-time
Compile-time

Processor
Processor
Processor
Processor
Prccessor
Prccessor
Prccessor
Prccessor
Processor
Prccessor
Prccessor
Prccessor
Prccessor
Processor
Prccessor
Prccessor
Processor
Prccessor
Prccessor
Prccessor
Prccessor
Processor
Processor
Prccessor
Processor
Prccessor
Prccessor
Processor
Prccessor
Prccessor
Processor
Prccessor
Prccessor
Prccessor
Prccessor
Prccessor
Processor
Prccessor
Processor
Prccessor
Prccessor
Prccessor
Prccessor
Processor
Processor
Prccessor
Prccessor
Processor
Prccessor
Prccessor
Prccessor
Prccessor
Prccessor
Processor
Prccessor
Prccessor
Processor
Processor
Processor
Prccessor
Prccessor
Prccessor
Processor
Prccessor
Processor
Prccessor
Prccessor

BG

IEMU45781 Compile-time Processor BG
| 1EM4580I compile-time Processor BG

Appendix I: Diagnostic Messages 428.1

Any initial value statements associated
with the ALLOCATE statement are extracted
and placed in-line. The initialization
statements are then skipped, and the scan
continues.

The last two steps are also performed
for LOCATE (based variable) and ALLOCATE
(kased variable) statements.

The action on encountering a BUY state-
ment is similar to that for *he ALLOCATE
statement, with the following exceptions:

1. Bound and string length code is in-
line, bracketed between BUYS and BUY
statements - there is therefore no
lcok ahead

2. There is no initial wvalue code
associated with temporaries

3. A slot in the DSA is updated with the

pointer to the allocated storage for a
temporary

The action on encountering a FREE state-
ment is tc¢ generate code to load a paramet-
er register with the pointer to the allo-
cated storage for the FREE VDA Library call
inserted by the pseudo-code.

Phase QU

Phase QU scans the pseudo-code text in
search of instructions which have misal-
igned operands. (A misaligned operand has
the UNALIGNED attribute and is not aligned
on the boundary appropriate to its data
type). When such an instruction is found,
QU inserts a move character (MVC) instruc-
tion in the pseudo-code text to move the
operand to or from an aligned workspace
area, and substitutes the address of this
workspace for the operand address in the
original instruction. If the address of a
misaligned operand is loaded into a reg-
ister, a note is made of that register. QU
thereafter treats the instructions which
refer to it as if they referred +to the
operand itself, by inserting a move charac-
ter instruction, and substituting the work-

space address for the reference in the
instruction.
Phase QU uses storage beginning at off-

set 32 from register 9 for its workspace.

Whenever a load address (LA) instruction
is found which 1lies within the calling
sequence of a library routine and which
loads the address of a risaligned argument
of that routine, an aligned workspace
address is substituted in the instruction,
and the requisite move character instruc-

Section 2 (Compiler Phases):

tion is stacked. It is not inserted in the
output text until the instruction is
encountered that loads register 15 prior to
the exit to the library routine, or in the

case of EDIT-directed I/C routines, until
the appropriate branch-and-1link (BALR)
instruction is encountered. The stacked

move character instruction is inserted into
the output before the exit to the routine
if the argument in question is an input
argument to the routine, and after the
return from the routine if it is an output
argument.

Phase QX

Phase QX is the 'AGGREGATE LENGTH TABLE'
printing phase. It is entered only if the
ATR (attribute 1list) option is specified.

It scans the STATIC, AUTOMATIC, CONTROLLED
and COBOL chains, and, for each major
structure or non~structured array that is

found, an entry i35 printed in the AGGREGATE
length table.

An AGGREGATE LENGTH TABLE entry consists
of the source program DECLARE statement
number, 'the identifier and the length (in
bvtes) of the aggregate. 1In the case of an
aggregate with the CONTROLLEL attribute, no
entry is printed for the DECLARE staterent,
but an entry is printed for each ALLOCATE
for the aggregate, the source program ALLOC-
CATE statement number being printed in the
‘statement number' column.

Where the aggregate length is not known

at compilation the word "adjustable" is
printed in the 'length in ‘bytes' column.
In the case of a DEFINED aggregate, the
word ‘DEFINED*, and not the aggregate
length, appears in the ‘'length in bytes®
column.

Before printing begins the aggregate

length table entrieb are sorted so that the
identifiers appear in collating sequence
order.

THE_REGISTER_ALLOCATION LOGICAL PHASE

The purpose of the Register Allocation
Phase 1is to insert into +the text the
appropriate addressing mechanisms for all

types of storage, and to allccate physical

general registers where syrkclic registers
are specified or required as base reg-
isters.

This vphase comprises twc physical phas-
es, each with a specific function. The
first, Phase RA, processes the addressing
mechanisms, while the second phase, Phase
RF, allocates the physical registers.

Register Allocation Logical Phase 61

	0001
	0002
	025
	026
	033
	034
	035
	036
	043
	044
	045
	046.0
	046.1
	049
	050
	051
	052
	059
	060
	061.1
	062
	117
	118
	129
	130
	135
	136
	139
	140
	209
	210
	243
	244
	255
	256
	287
	288
	289
	290
	302.1
	302.2
	303
	304
	335
	336
	337
	338
	345.0
	345.1
	346
	355
	356.0
	356.1
	363
	364
	365.0
	365.1
	366
	373
	374
	413
	414
	421
	422.0
	422.1
	425
	426
	427
	428.0
	428.1
	61.0

